Algorithmics (6EAP)

Regular Expressions and Automata

Jaak Vilo
2020 fall

Contents

• Regular expressions and regular languages
 • Automata
 — Deterministic finite automata DFA
 — Nondeterministic finite automata NFA
 • Regular expressions to NFA
 • NFA to DFA

Links

• Navarro and Raffinot, Flexible Pattern Matching in Strings. (Cambridge University Press, 2002).
 ch. 5: Regular Expression Matching (pp. 99–143)
• Regular expression search using a DFA (relative difficulty, handbook level) (IEEE TRANS. Comput., pp. 10–20, 113–134, [Nika2002], ch. 4)
• Regular expression search using a DFA (relative difficulty, handbook level) (IEEE TRANS. Comput., pp. 10–20, 113–134, [Nika2002], ch. 4)

Regular expression

• Definition: A regular expression RE is a string on the set of symbols Σ ∪ {ε, |, ·, *, (,)}, which is recursively defined as follows. RE is
 — an empty character ε,
 — a character α ∈ Σ,
 — (RE1),
 — (RE1 · RE2),
 — (RE1 | RE2), and
 — (RE1*),
where RE1 and RE2 are regular expressions

Example

((A - T) | (G - A)) · ((A - G) | ((A - A) - A)*)

• we can simplify
 (AT|GA)((AG)(AAA)*)

• Often also this is used:
 RE+ = RE · RE*

Why?

• Regular expression defines a language
 • A set of words from Σ*
 • A convenient short-hand
 • (AT|GA)((AG)(AAA)*) ⇒ AT, ATAG, GAAAA, GAAGAAAAA, ...
 • Infinite set
Language represented by RE

Definition: A language represented by a regular expression RE is a set of strings over Σ, which is defined recursively on the structure of RE as follows:

- If RE is ε, then L(RE) = {ε}, the empty string
- If RE is a ∈ Σ, then L(RE) = {a}, a single string of one character
- If RE is of the form (RE_1), then L(RE) = L(RE_1), the output of one language, (for call) (the concatenate operator)
- If RE is of the form (RE_1 · RE_2), then L(RE) = L(RE_1) · L(RE_2), the output of two languages, (for call) (the union operator)
- If RE is of the form (RE_1|RE_2), then L(RE) = L(RE_1) U L(RE_2), the union of two languages. (We call | the union operator)
- If RE is of the form (RE_1)*, then L(RE) = L(RE)* = \(\bigcup_{i \geq 0} L(RE_1)^i \), where L_0 = {ε} and L_i = L · L_i-1. (We call * the star operator)

<table>
<thead>
<tr>
<th>Regular expression</th>
<th>Language L(RE)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>{ε}</td>
<td>Empty string</td>
</tr>
<tr>
<td>a ∈ Σ</td>
<td>{a}</td>
<td>Single character</td>
</tr>
<tr>
<td>(RE_1)</td>
<td>L(RE_1)</td>
<td>Parenthesis</td>
</tr>
<tr>
<td>(RE_1 · RE_2)</td>
<td>L(RE_1) · L(RE_2)</td>
<td>Concatenation</td>
</tr>
<tr>
<td>(RE_1</td>
<td>RE_2)</td>
<td>L(RE_1) U L(RE_2)</td>
</tr>
<tr>
<td>(RE_1)*</td>
<td>L(RE_1)* = (\bigcup_{i \geq 0} L(RE_1)^i)</td>
<td>The star operator (Kleene star)</td>
</tr>
</tbody>
</table>

A different example definition

- A different example definition
- Just as finite automata are used in a recognizer pattern of strings, regular expressions can create automatic patterns of regular expressions or an equivalent formula in regular expressions.
- A regular expression or regular expressions are particularly convenient in recognizing patterns of strings.
- A regular expression can describe a pattern consisting of a set of strings, called the language of the expression.
- Operands in a regular expression can be:
 - characters from the alphabet over which the regular expression is defined.
 - variables whose values are any pattern defined by a regular expression.
 - epsilon which denotes the empty string containing no characters.
 - null which denotes the empty set of strings.
- Operators used in regular expressions include:
 - * Concatenation: If R1 and R2 are regular expressions, then R1R2 (also written as R1.R2) is also a regular expression.
 \(L(R1R2) = L(R1) \) concatenated with L(R2).
 - | Union: If R1 and R2 are regular expressions, then R1 | R2 (also written as R1 U R2 or R1 + R2) is also a regular expression.
 \(L(R1|R2) = L(R1) U L(R2) \).
 - * Kleene closure: If R1 is a regular expression, then R1* (the Kleene closure of R1) is also a regular expression
 \(L(R1*) = \epsilon \cup L(R1) \cup L(R1R1) \cup L(R1R1R1) \cup ... \).
- In order to simplify the expression, we define the following:
- A different example definition
- Just as finite automata are used in a recognizer pattern of strings, regular expressions can create automatic patterns of regular expressions.
- A regular expression or regular expressions are particularly convenient in recognizing patterns of strings.
- A regular expression can describe a pattern consisting of a set of strings, called the language of the expression.
- Operands in a regular expression can be:
 - characters from the alphabet over which the regular expression is defined.
 - variables whose values are any pattern defined by a regular expression.
 - epsilon which denotes the empty string containing no characters.
 - null which denotes the empty set of strings.
- Operators used in regular expressions include:
 - * Concatenation: If R1 and R2 are regular expressions, then R1R2 (also written as R1.R2) is also a regular expression.
 - | Union: If R1 and R2 are regular expressions, then R1 | R2 (also written as R1 U R2 or R1 + R2) is also a regular expression.
 - * Kleene closure: If R1 is a regular expression, then R1* (the Kleene closure of R1) is also a regular expression.
 - Suffix of a regular expression is defined as a regular expression
 - Lexicon has the properties of a prefix, followed by a property.
Q: what is the language?

Deterministic finite automaton (DFA)

Definition: DFA is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is the finite set of states of an automaton
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of accepting final states

Usage:
- Transition step: $(q, a, w) \rightarrow (q', w)$ if $q' = \delta(q, a), w \in \Sigma^*$
- Accepted language: $L(M) = \{ w \mid (q_0, w) \rightarrow^* (q, \epsilon), q \in F \}$

Non-deterministic finite automaton (NFA)

Definition: NFA is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is the finite set of states of an automaton
- Σ is the input alphabet
- $\delta : Q \times (\Sigma \cup \{ \epsilon \}) \rightarrow P(Q)$ is the transition function (a set)
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of accepting final states

Usage:
- Transition step: $(q, a, w) \rightarrow (q', w)$ if $q' \in \delta(q, a), a \in \Sigma^*$
- Accepted language: $L(M) = \{ w \mid (q_0, w) \rightarrow^* (q, \epsilon), q \in F \}$

Lõplik automaat (näide)

13
14
15
16
17
18
DFA

\[Q = \{ S_0, S_1, S_2 \} \]
\[\Sigma = \{ a, b \} \]
\[\delta : q_0 \in S_0 \]
\[F = \{ S_2 \} \]

\[S_0 \rightarrow a S_0 \]
\[S_0 \rightarrow a S_1 \]
\[S_1 \rightarrow b S_2 \]
\[S_2 \rightarrow b S_2 \]

\[(AA)^*AT \]

\[Q = \{S_0, S_1, S_2\} \]
\[\Sigma = \{a, b\} \]
\[\delta : q_0 \in S_0 \]
\[F = \{ S_2 \} \]

\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_1 \rightarrow b S_2 \]
\[S_2 \rightarrow b S_2 \]

\[(AA)^*AT \]

\[Q = \{S_0, S_1, S_2\} \]
\[\Sigma = \{a, b\} \]
\[\delta : q_0 \in S_0 \]
\[F = \{ S_2 \} \]

\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_1 \rightarrow b S_2 \]
\[S_2 \rightarrow b S_2 \]

\[(AA)^*AT \]

\[Q = \{S_0, S_1, S_2\} \]
\[\Sigma = \{a, b\} \]
\[\delta : q_0 \in S_0 \]
\[F = \{ S_2 \} \]

\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_0 \rightarrow a S_1 \]
\[S_1 \rightarrow b S_2 \]
\[S_2 \rightarrow b S_2 \]
Regexp -> NFA / DFA

- Construction of an automaton from the regular expression
- Regular expressions are mathematical and human-readable descriptions of the language
- Automata represent computational mechanisms to evaluate the language
- One needs to be able to parse the regular expression and to construct an automaton for matching it.

Thompson construction

- Primitive automata
- Composition
- No optimality, no compression, etc.
Union and Concatenation

- $s|t$
- st

Example

- $a^* (ba|c)$

Simulation of an NFA

Input: NFA $M=(Q, \Sigma, \delta, q_0, F)$

Output: States after each character read $Q_0, Q_1, ..., Q_n$

1. Initialize queue and sets Q_i as empty
2. for $i = 0$ to n
 // for each symbol of text
 2. mark all $q \in Q$ unreached
 3. if ($i == 0$)
 // Initialise start state
 3. $Q_0 = q_0$;
 queue = q_0; mark q_0 as reached
 4. else
 // Main transitions on $s[i]
 4. foreach $q \in Q_{i-1}$
 5. foreach $p \in \delta(q, s[i])$
 // All transitions on $s[i]
 6. if p not yet reached
 6. $Q_i = Q_i \cup p$
 7. push(queue, p)
 8. mark p as reached
 9. while queue $\neq \emptyset$
 // Follow up on all ε-transitions
 10. $q = take(queue)$
 11. foreach $p \in \delta(q, \varepsilon)$
 // All ε-transitions
 12. if p not yet reached
 12. $Q_i = Q_i \cup p$
 13. push(queue, p)
 14. mark p as reached

- Produces up to $2m$ states, but it has interesting properties, such as ensuring a linear number of edges, constant indegree and outdegree, etc.
• **Theorem** Time complexity of the NFA simulation is \(O(||M_A|| \cdot n) \) where \(||M_A|| \) is the total number of states and transitions of \(M_A \), \(||M_A|| \leq 6 |A| \).

• **Proof** - During one step all states are manipulated only once, since all states are marked reached. There is at most \(n \) steps. The size of the automaton is at most \(6 |A| \) where \(|A| \) is the length of the regular expression.

Glushkov construction

\[
\]

Matching of RE-s

- No \(\epsilon \) links
- All incoming arcs have the same character label
- To reach a certain state always the same character from text had to be read.
- Construction: worst case is \(O(m^3) \) since poor performance for star closures...
- But this has been speeded up a bit
NFA -> DFA

- Why?
- More straightforward (i.e. faster) to match/simulate

Determination of a NFA into a DFA

- Maintain at each stage a set of states reachable from previous set on the given character. (Remove ε transitions.)
- Represent every reachable combination of states of a NFA as a new state of DFA.
- From each state there has to be only one transition on a given character.
- *Automata for Adaptive Pattern Matching in Formal Languages* (Kohalik)

Maintain at each stage a set of states reachable from previous set on the given character. (Remove ε transitions.)

Represent every reachable combination of states of a NFA as a new state of DFA.

From each state there can be only one transition on a given character.

<table>
<thead>
<tr>
<th>States</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(0)</td>
<td>0,1,4</td>
<td>2</td>
</tr>
<tr>
<td>E(1)</td>
<td>2</td>
<td>3,7,8,9,12,17</td>
</tr>
<tr>
<td>E(2)</td>
<td>3,7,8,9,12,17</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>States</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(0)</td>
<td>0,1,4</td>
<td>2</td>
</tr>
<tr>
<td>E(1)</td>
<td>2</td>
<td>3,7,8,9,12,17</td>
</tr>
<tr>
<td>E(2)</td>
<td>3,7,8,9,12,17</td>
<td>F</td>
</tr>
</tbody>
</table>
Minimization of automata

- DFA construction does not always produce the minimal automaton
- Smaller -> better (?)
- Must still represent equivalent languages!

Minimization

- A compiler course subject
 Addison Wesley 1986. (The Dragon Book)
- Minimization description [L4_RegExp/min-fa.html]
 A: Merge all equivalent states until minimum achieved
 B: Start from minimal possible (2-state) and split states until no conflicts
• Fact. Equivalent states go to equivalent states under all inputs.
• Recognizer for \((aa \mid b)^*ab(bb)^*\)

![Diagram of states and transitions]

Step 1: Generate 2 equivalence classes: Final and other states

Step 2: Create new class from 1 and 6 (conflict on b)

Step 3: Create new class from 3

Step 4: Create new class from 6

Minimal automaton

All states are consistent
Construct a DFA from the regular expression

- Usually NFA is constructed, and then determined
- McNaughton and Yamada proposed a method for direct construction of a DFA

Example: Let’s analyze RE = (a ∪ b)*aba
- Add end symbol # : (a ∪ b)*aba#
- Make a parse tree
- Leaves represent symbols of Σ from RE
- Internal nodes - operators
- Give a unique numbering of leaves
- Position nr is active if this can represent the next symbol
- DFA states and transitions are made from the tree
- Initial state is (1,2,3) (when nothing has been read yet)
- DFA contains transitions q → a q’ where q’ are positions that are activated when in positions of q the character a is read.
- Final states are those containing the position number of #
Construction of regular expressions from the automata

- It is possible to start from an automaton and then generate the regular expression that describes the language recognized by the automaton.
- **Example**
 - In the bottom of page there are links to "current version".
Filtering approaches for regular expression searches

• Identify a (sub)set of prefixes or factors that are necessarily present in the language represented by regexp.
• Use multi-pattern matching techniques for matching them all simultaneously.
• In case of a match use the automaton to verify the occurrence.

Prefixes
• l_{min} - the shortest occurrence length (to avoid missing short occurrences)
• $[(GA|AAA)*(TA|AG)]$ the set of 2-long prefixes is $\{ GA, AA, TA, AG \}$
• $[(AT|GA)(AG|AAA)((AG|AAA)+)]$ $l_{\text{min}}=6$
• $\{ ATAGAG, ATAGAA, ATAAAA, GAAGAG, GAAGAA, GAAAAA \}$

• $\{AG|GA|ATA((TT)^*)\}$
• The string ATA is a necessary factor.
• Gnu grep uses such heuristics.
• Can be developed to utilise a lot of knowledge about possible frequencies of occurrences, speed of multi-pattern matchers etc.
Learning languages

• AGAGGAT +
• ATGAGAA +
• ATGATTA –
• AA –
• AAATGA –
• AGATAG +

Q: What is the language represented by the positive examples?
A1: List of positive examples
A2: Minimal recognizer that recognizes + examples, and none of the – examples?

Finding A2 in general is computationally hard problem.

Summary

Regular expression Parse NFA DFA Occurrences minimize

How to find primes

perl -e 'foreach $i (1000..1050) { print "$i
if ("a"*$i) !~ /^(aa+)(\1+)$/}'}

1009
1013
1019
1023
1031
1033
1039
1049