Trees

• Some of the very basic essence of computer science and programming

• Chapter 5 – “The Tree Data Model” (pp 223-285) in
 • Foundations of Computer Science: C Edition
 • Alfred V. Aho, Jeffrey D. Ullman
 • W. H. Freeman (October 15, 1994)

Tree

• Acyclic graph
 — root of a tree
 — children, parents, siblings, internal nodes, leaves

• Binary tree – node has 0, 1, or 2 children

Data model

• Abstraction

• File directory system
• Hierarchical organisation structure
 — divide and conquer
• Hierarchical controlled vocabulary (simple ontology)
• syntactic structure of a (sentence in a) language
• syntax – e.g. paired parentheses
• ...

Example: XHTML and CSS

• The nested tags define sub-trees
<xml>
<title>Hello World!</title>
</head>
<body>
<h1>This is a <u>Heading</u></h1>
<p>This is a paragraph with some <u>underlined</u> text.</p>
</body>
</xml>

Douglas Wilhelm Harder – Univ. Waterloo
Example: XHTML and CSS

• The nested tags define sub-trees

```html
<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1>This is a <u>Heading</u></h1>
<p>This is a paragraph with some <u>underlined</u> text.</p>
</body>
</html>
```

• This defines a single tree

```
• This may be rendered by a web browser

```

Terminology

- Descendants (of B) = B,C,D,E,F,G
- Ancestors of I = I,H,A

Every node is connected via a path to root
Terminology

Topologically equal to previous slide
Depends on application if order is important or not

Trie for $P=\{\text{he, she, his, hers}\}$

Implementation of branching

Small tree-index or array-index

Binary trees
Binary Trees

Definition: Any node can have 0, 1 or 2 children

• A full node is a node where both the left and right sub-trees are non-empty trees

• Legend:
 - full nodes
 - neither
 - leaf nodes

Basic node structure

Binary Trees

• An empty node or a null sub-tree is any location where a new leaf node could be inserted

Perfect Binary Trees: Definition

• A perfect binary tree of height h is a binary tree where
 - All leaves have the same depth h
 - All other nodes are full

Perfect Binary Trees Examples

• Perfect binary trees of height $h = 0, 1, 2, 3$ and 4
Perfect Binary Trees

$2^h + 1 - 1$ Nodes

- Using the recursive definition, both sub-trees are perfect trees of height $h = k - 1$
- By assumption, each sub-tree has $2^k - 1$ nodes
- Therefore the total number of nodes is
 $$\left(2^{h+1} - 1\right) + 1 + \left(2^{h+1} - 1\right) = 2^{h+2} - 1$$

Complete Binary Trees: Definition

- A complete binary tree filled at each depth from left to right:

Complete Binary Trees: Array Storage

- Fill the array following a breadth-first traversal:

 Function: Tree-Walk(x)

Complete Binary Trees: Array Storage

- To insert another node while maintaining the complete-binary-tree structure, we must insert into the next array location

Traversal of a binary tree

- To insert another node while maintaining the complete-binary-tree structure, we must insert into the next array location
Traversal of a binary tree

```plaintext
Tree-Walk(x)
if x ≠ NULL then
    Tree-Walk( left(x) )
    Tree-Walk( right(x) )
```

Traversal of a binary tree

```plaintext
Tree-Walk(x)
if x ≠ NULL then
    // pre-order operations
    Tree-Walk( left(x) )
    // in-order operations
    Tree-Walk( right(x) )
    // post-order operations
```

Traversal of a binary tree - size

```plaintext
int Tree-Size(x)
if x == NULL then return 0
return
    Tree-Size( left(x) ) +
    Tree-Size( right(x) ) + 1
```

Traversal of a binary tree – parenthesisation

```plaintext
Tree-Walk(x)
if x ≠ NULL then
    print “(”, x.value;
    Tree-Walk( left(x) );
    Tree-Walk( right(x) );
    print “)”;  
```

Parenthesisation

```
( 3 ( 9 ( 14 (17) (15) ) (10 (13) (23) ) ) ) ....
```

Binary Trees

Application: Expression Trees

- Expression trees
 \[3(2a + c + a) + b/3 + (a - 2) \]
Binary Trees
Application: Expression Trees
- internal nodes store operators
- leaves store operands
- no node has just one sub tree
- the order is not relevant for addition and multiplication (commutative)
- the order is relevant for subtraction and division (non-commutative)
- to ignore order completely, represent subtraction and division as unary operators
 \[(a/b) = a \times b^{-1} \quad (a - b) = a + (-b)\]

Evaluate the expression

```c
int Eval-Tree( x )
int val1, val2;
if x->op == "i" return x->value; // x is a leaf, integer value
else
  val1 = Eval-Tree( x->left );
  val2 = Eval-Tree( x->right );
  switch ( n->op ) {
    case "+": return val1 + val2;
    case "-": return val1 - val2;
    case "*": return val1 * val2;
    case "/": return val1 / val2;
  }
```

General Trees: Design
- Children – in a linked list

Traversal of a general tree

```c
Tree-Walk( x )
if x ≠ NULL then
  foreach c in children(x)
    Tree-Walk( c )
```
Traversal of a general tree

Tree-Walk(x)
if x ≠ NULL then
 // pre-order operations
 foreach c in children(x)
 Tree-Walk(c)
 // post-order operations

Depth-first Traversal

• We note that each node could be visited twice in such a scheme
 – the first time the node is approached, and
 – the last time it is approached.

Pre-order Depth-first Traversal

• Visiting each node first results in the sequence
 A, B, C, D, E, F, G, H, I, J, K, L, M

Post-order Depth-first Traversal

• Visiting the nodes with their last visit:

Parenthesised tree serialisation

• Passing such a visitor results in the output:
 (A(B(C(D))(E(F)(G))(H(I)(J)(K)(L)(M))))
Breadth-First Traversal

- Breadth-first traversal would visit the nodes in the order:

Breadth-First Traversal

Breadth-First (x)

1 enqueue(Q, x)
2 while not empty(Q)
3 x = dequeue(Q)
4 print x->name // process node x
5 foreach c in next-child(x)
6 enqueue(Q, c)

Printing Directories

- Given the directory structure

Exercise

- Print the following statistics for a given (e.g. current working) directory:
 - subdirectory size (# of all subdirectories and files)
 - depth (maximal height)
 - width at all levels of depth...
 - maximal depth
 - largest directory in nr of subdirs and files in that directory
 - ...
Advanced Algorithmics (6EAP)

MTAT.03.238

Trees

Jaak Vilo
2020 Fall

Binary Search Tree (BST)

- Data structure for (Dynamic) Dictionary
- MIT [Link]
- Binary tree where values of the keys have a special order:
 \[\text{values(left subtree)} < \text{value(root)} \leq \text{values(right subtree)} \]

<table>
<thead>
<tr>
<th>What is the time complexity of:</th>
<th>Worst case</th>
<th>Average case</th>
<th>Could you implement it without consulting literature?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quicksort</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2. Merge Sort</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3. Heap Sort</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4. Radix sort</td>
<td>4.</td>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5. Theoretically best</td>
<td>5.</td>
<td>5.</td>
<td>5.</td>
</tr>
<tr>
<td>comparison based sort</td>
<td>6.</td>
<td>6.</td>
<td>6.</td>
</tr>
<tr>
<td>6. Theoretically best</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorting (any)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw a binary search tree

(BST) after inserting: 2, 5, 6, 1, 3 into an initially empty tree

50% did correct BST. Others -- empty or mistakes.

Examples

- Here we see a complete binary search tree, and a binary search tree which is close to being complete -- balanced

Examples

- There are many different representations of the same ordered data:
Operations on dynamic sets

SEARCH(S, k)
A query that, given a set S and a key value k, returns a pointer x to an element in S such that key[x] = k, or NIL if no such element belongs to S.

INSERT(S, x)
A modifying operation that augments the set S with the element pointed to by x. We usually assume that any fields in element x needed by the set implementation have already been initialized.

DELETE(S, x)
A modifying operation that, given a pointer x to an element in the set S, removes x from S. (Note that this operation uses a pointer to an element x, not a key value.)

MINIMUM(S)
A query on a totally ordered set S that returns a pointer to the element of S with the smallest key.

MAXIMUM(S)
A query on a totally ordered set S that returns a pointer to the element of S with the largest key.

SUCCESSOR(S, x)
A query that, given an element x whose key is from a totally ordered set S, returns a pointer to the next larger element in S, or NIL if x is the maximum element.

PREDECESSOR(S, x)
A query that, given an element x whose key is from a totally ordered set S, returns a pointer to the next smaller element in S, or NIL if x is the minimum element.

Operations - search

TREE-SEARCH (x, k)
1 if x= NIL or k = x.key
2 then return x
3 if k < x.key
4 then return TREE-SEARCH(x.left, k)
5 else return TREE-SEARCH(x.right, k)

Iterative search

ITERATIVE-TREE-SEARCH (x, k)
1 while x ≠ NIL and k ≠ x.key
2 if k < x.key
3 then x = x.left
4 else x = x.right
5 return x

(Tail) Recursion "unrolling" – should be more efficient

Min and Max

Tree-Minimum (x)
1 while left[x] ≠ NIL
2 x = left[x]
3 return x

Tree-Maximum (x)
1 while right[x] ≠ NIL
2 x = right[x]
3 return x

Successor

Tree-Successor (x)
1 if right[x] ≠ NIL
2 then return Tree-Minimum(right[x])
3 y = parent[x]
4 while y ≠ NIL and x = right[y]
5 x = y; y = parent[y]
6 return y

Insert a node

• Find such a node where “next” position is missing...
Remove

• Suppose we wish to remove a node
• There are three situations: the node being removed
 – is a leaf node,
 – has exactly one child, or
 – is a full node (two children).

• If it is a leaf node, we can remove it:

Remove

• If the node has only one child, we can promote that child (with all the subtree underneath):

Remove

• If it is a full node, we copy the minimum element from the right sub-tree
• Recursively delete the value we copied

Example

• Consider the following tree
• We will twice remove the root

Example

• First, to remove 15, it is a full node
• We find the minimum element in the right sub-tree
Example
- We promote 42 to the root
- Proceed to remove 42 from the right sub-tree

Example
- This has one child, so we promote the entire sub-tree to replace 42

Example
- The root has been deleted, and the result is still a binary search tree

Example
- Next, let us remove 42
 - Once again, it is a full node, so get the minimum element in the right sub-tree

Example
- We promote 45 to the root and proceed to delete 45 from the right sub-tree

Example
- The node 45 is a leaf node, so we may simply remove it
Example

• Thus, the final tree, having removed 15 and then 42 is

![Tree Diagram]

Reading

• CLRS: Binary Search Trees

• Visualisations:

Complexity...

• (Almost) all operations depend on the depth of the tree (or node affected)

• Binary search tree can get unbalanced, depth \(O(n) \)

• How to ensure this does not happen?

Complexity...

• (Almost) all operations depend on the depth of the tree (or node affected)

• Binary search tree can get unbalanced, depth \(O(n) \)

• How to ensure this does not happen?
Balanced Binary Search Trees

- MIT
- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees

Balance

- If elements are added in random, tree is “automatically balanced” on average
- Otherwise: we must re-balance it ourselves...

AVL-trees

- Adelson-Velskii and Landis
- In an AVL tree, the heights of the two child subtrees of any node differ by at most one;

 - The AVL tree is named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published it in their 1962 paper "An algorithm for the organization of information."

Height of an AVL Tree

- If $n = 88$, the worst- and best-case scenarios differ in height by only 2:

 - In an AVL tree, the heights of the two child subtrees of any node differ by at most one;
 - Difference: -1, 0, 1
 - Re-balance using rotations when getting out of balance...
 - $O(\lg n)$ normal operations
 - Up to $O(\lg n)$ re-balancing operations of $O(1)$
 - an AVL tree's height is limited to $1.44 \lg n$
Height of an AVL Tree

- If \(n = 10^6 \), the bounds on \(h \) are:
 - The minimum height: \(\log_2 (10^6) - 1 \approx 19 \)
 - The maximum height: \(\log_2 (10^6 / 1.8944) < 28 \)

An AVL tree’s height is strictly less than:

\[
\log_\phi (\sqrt{\phi(n+2)} - 2) = 2 \left(\log_\phi (\sqrt{\phi(n+2)} - 2) - 1 \right) = 2 \log_\phi (\sqrt{\phi(n+2)} - 2) - 2 = 1.44 \log_\phi (n+2) - 0.22
\]

where \(\phi \) is the golden ratio.

Red-Black Trees

1. A node is either red or black.
2. The root is black. (This rule is used in some definitions and not others. Since the root can always be changed from red to black but not necessarily vice-versa, this rule has little effect on analysis.)
3. All leaves are black.
4. Both children of every red node are black.
5. Every simple path from a node to a descendant leaf contains the same number of black nodes.

Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (Nil’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node \(x \) to a descendant leaf have the same number of black nodes = black-height(\(x \)).

Example of a red-black tree

4. All simple paths from any node \(x \) to a descendant leaf have the same number of black nodes = black-height(\(x \)).
Theorem. A red-black tree with \(n \) keys has height \(h \leq 2 \log(n + 1) \).

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves.

Proof (continued)
- We have \(h' \geq h/2 \), since at most half the leaves on any path are red.
- The number of leaves in each tree is \(n + 1 \)
 \[\Rightarrow n + 1 \geq 2^h \]
 \[\Rightarrow \log(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \log(n + 1). \]

Query operations

Corollary. The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in \(O(\log n) \) time on a red-black tree with \(n \) nodes.

Modifying operations

The operations INSERT and DELETE cause modifications to the red-black tree:
- the operation itself,
- color changes,
- restructuring the links of the tree via “rotations”.
Rotations maintain the inorder ordering of keys:
- \(a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c \).
A rotation can be performed in \(O(1) \) time.

Insertion into a red-black tree

IDEA: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.

Insertion into a red-black tree

IDEA: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18).**
Pseudocode

```
Pseudocode

RB-INSERT(T, x)
  TREE-INSERT(T, x)
  color[x] ← RED  // only RB property 3 can be violated
  while x ≠ root[T] and color[par[x]] = RED
    do if color[x] = left[par[x]]
       then y ← right[par[x]]  // y = aunt/uncle of x
          if color[y] = RED
             then (Case 1)
                else if x = right[par[x]]
                   then (Case 2)  // Case 2 falls into Case 3
                      else ("then" clause with "left" and "right" swapped)
             color[root[T]] ← BLACK
```

Graphical notation

Let a denote a subtree with a black root.
All a's have the same black-height.

Case 1

Recolor

(Or, children of A are swapped.)

Push C's black onto A and D, and recurse, since C's parent may be red.

Case 2

LEFT-ROTATE(A)

Transform to Case 3.

Case 3

RIGHT-ROTATE(C)

Done! No more violations of RB property 3 are possible.

Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\log n)$ with $O(1)$ rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).
Other ideas

- Balancing can be an independent process – at night?
- Many search&insert&delete processes, and few rebalancing processes
- Local locking. Must ensure no deadlocks occur!

Properties of Red-Black trees

- No overhead for searching – efficient
- 100-200 lines of code, many symmetric cases
- Left-Leaning Red-Black trees (LLRB)
 – Robert Sedgewick:

Splay trees (Sleator, Tarjan 1985)

- Self-adjusting BST
- Recently accessed elements are brought to the top of the tree
- Repeated accesses will be executed faster!
- No extra bookkeeping
- Average log(n) but worst case O(n)

Advanced Algorithmics (6EAP)

MTAT.03.238
Trees – B-trees

Jaak Vilo
2020 Fall
2-3, 2-3-4, B-trees

- Binary trees are useful for memory-based data structures
- Large databases and disk based systems would benefit of fewer reads of larger block sizes
- Organise data in a search tree that minimizes disk accesses

B-tree (m-way)

\[h = O(\log_m n) \]

In practice: 3-5 accesses to disk ...

B-tree properties

A B-tree of order \(m \) (the maximum number of children for each node) is a tree which satisfies the following properties:

- Every node has at most \(m \) children.
- Every node (except root and leaves) has at least \(\frac{m}{2} \) children.
- The root has at least two children if it is not a leaf node.
- All leaves appear in the same level, and carry information.
- A non-leaf node with \(k \) children contains \(k-1 \) keys

Half-full property ensures that ...

- two half-full nodes can be joined to make a legal node, and one full node can be split into two legal nodes (if there is room to push one element up into the parent).
Example: Two-level Insertion

- Inserting 29
- Leaf node is full, so we split it into two

Example: Root Insertion

- Insert 67
- Leaf is full, so split it into two

Example: Root Insertion

- Parent is full, so split it into two

Example: Root Insertion

- Root is full, so split it into two
Example: Root Insertion

- Create a new root node

- The creators of the B-tree structure, Rudolf Bayer and Ed McCreight, have not explained what, if anything, the B stands for. Douglas Comer suggests a number of possibilities:
 - "Balanced," "Broad," or "Bushy" might apply [since all leaves are at the same level]. Others suggest that the "B" stands for Boeing [since the authors worked at Boeing Scientific Research Labs in 1972]. Because of his contributions, however, it seems appropriate to think of B-trees as "Bayer"-trees.[1]

Variants of B-trees

- Keys and data in leaves or internal nodes
- Order statistics
- ...

Analogy between R-B and B-trees

Advanced Algorithmics (6EAP)
MTAT.03.238
Trees – Multi-dimensional

Jaak Vilo
2020 Fall
k-d tree

- Multi-dimensional data
 - 2-dim \((x, y)\)
 - 3D \((x, y, z)\)
 - d-dim \((x_1, ..., x_d)\)
- Does a point belong to a set?
- What is the closest point? (other data structures)
- ...

2-d data (xy, gps, coordinates)

\[(7,2) (5,4) (2,3) (4,7) (9,6) (8,1) \ldots\]

2-D tree \((x, y) \text{ coordinates})

![2-D tree diagram](image)

kd tree

![kd tree diagram](image)

kd-Trees

- Suppose we wish to partition the following points in a 2-dimensional kd-tree:

 \[(0.01, 0.48), (0.02, 0.91), (0.02, 0.97), (0.03, 0.90), (0.04, 0.06), (0.04, 0.41), (0.04, 0.61), (0.05, 0.07), (0.06, 0.48), (0.06, 0.68), (0.07, 0.01), (0.07, 0.32), (0.08, 0.67), (0.09, 0.89), (0.10, 0.02), (0.10, 0.23), (0.11, 0.49), (0.12, 0.62), (0.13, 0.21), (0.14, 0.65), (0.15, 0.68), (0.16, 0.42), (0.17, 0.64)\]

kd-Trees

- The first step is to order the points based on the 1st coordinate and find the median:

 \[(0.01, 0.06), (0.02, 0.01), (0.02, 0.15), (0.03, 0.10), (0.04, 0.06), (0.04, 0.41), (0.04, 0.42), (0.05, 0.07), (0.06, 0.48), (0.06, 0.68), (0.07, 0.01), (0.07, 0.32), (0.08, 0.67), (0.09, 0.89), (0.10, 0.02), (0.10, 0.23), (0.11, 0.49), (0.12, 0.62), (0.13, 0.21), (0.14, 0.65), (0.15, 0.68), (0.16, 0.42), (0.17, 0.64)\]
kd-Trees

• The median point, (0.29, 0.15), forms the root of our kd-tree

kd-Trees

• This partitions the remaining points into two sets:

\begin{align*}
&\{(0.01, 0.48), (0.02, 0.91), (0.02, 0.97), (0.03, 0.90), \\
&(0.04, 0.06), (0.04, 0.41), (0.04, 0.61), (0.05, 0.88), \\
&(0.06, 0.08), (0.09, 0.55), (0.13, 0.12)\} \\
&\{(0.23, 0.23), (0.37, 0.04), (0.33, 0.07), (0.41, 0.89), \\
&(0.46, 0.58), (0.54, 0.65), (0.55, 0.02), (0.54, 0.78), \\
&(0.68, 0.42), (0.73, 0.69), (0.74, 0.97), (0.94, 0.02), \\
&(0.95, 0.07), (0.97, 0.09), (0.97, 0.18)\}
\end{align*}

kd-Trees

• Starting with the first partition, we order these according to the 2nd coordinate:

\begin{align*}
&(0.06, 0.25), (0.04, 0.06), (0.05, 0.07), (0.23, 0.24), \\
&(0.06, 0.28), (0.04, 0.43), (0.01, 0.48), (0.01, 0.55), \\
&(0.09, 0.89), (0.02, 0.03), (0.02, 0.07), (0.05, 0.48), \\
&(0.09, 0.89), (0.05, 0.97)
\end{align*}

kd-Trees

• This point creates the left child of the root

kd-Trees

• Starting with the second partition, we also order these according to the 2nd coordinate:

\begin{align*}
&(0.05, 0.22), (0.04, 0.22), (0.07, 0.16), (0.23, 0.21), \\
&(0.05, 0.27), (0.07, 0.09), (0.07, 0.18), (0.04, 0.42), \\
&(0.10, 0.34), (0.10, 0.39), (0.13, 0.42), (0.74, 0.97), \\
&(0.06, 0.76), (0.41, 0.89), (0.74, 0.97)
\end{align*}

kd-Trees

• This point creates the right child of the root
kd-Trees

• Next, ordering the partitioned elements by the 1st coordinate, we choose the medians to find the children of the left child (0.09, 0.55):

(0.01, 0.48), (0.04, 0.06), (0.04, 0.41), (0.05, 0.17),
(0.05, 0.02), (0.05, 0.28), (0.19, 0.23),
(0.02, 0.50), (0.02, 0.50), (0.03, 0.50), (0.04, 0.61),
(0.05, 0.48), (0.05, 0.67), (0.08, 0.88)

kd-Trees

• Doing the same with the two right partitions, we get the children of the right child of the root:

(0.33, 0.07), (0.36, 0.04), (0.55, 0.02),
(0.94, 0.02), (0.95, 0.07), (0.97, 0.09), (0.97, 0.18),
(0.41, 0.89), (0.54, 0.65), (0.55, 0.54),
(0.56, 0.78), (0.73, 0.69), (0.74, 0.97)

kd-Trees

• At the next level, we order the points again based on the 2nd coordinate and choose the medians:

(0.04, 0.05), (0.04, 0.41), (0.01, 0.48)
(0.05, 0.06), (0.05, 0.28), (0.10, 0.28)
(0.03, 0.45), (0.03, 0.66), (0.02, 0.57)
(0.05, 0.48), (0.05, 0.67), (0.05, 0.67)
(0.15, 0.37), (0.15, 0.67), (0.15, 0.37)
(0.06, 0.45), (0.14, 0.45), (0.08, 0.45)
(0.73, 0.68), (0.76, 0.78), (0.74, 0.97)

kd-Trees

• The result is a 2-dimensional \(k\)-dimensional \(k\)-tree of the given 31 points

kd-Trees

• A useful application of a \(k\)-tree provides an efficient data structure for counting the number of points which fall within a given \(k\)-dimensional rectangle
kd-Trees

- This is used in image processing: locating objects within a scene, ray tracing, etc.
- Find the points which lie in the quadrant $[0.5, 1] \times [0, 0.5]$

kd-Trees

- The traversal rules we will follow are:
 - we always match the coordinate corresponding to the level we are current at
 - if that coordinate is less than the corresponding interval of the box, we only need to visit the right sub-tree
 - if that coordinate is greater than the corresponding interval, we need only visit the left sub-tree
 - otherwise, we check if the root is in the box and we visit both sub-trees

Nearest neighbour search

- kd-trees are not suitable for efficiently finding the nearest neighbour in high dimensional spaces.
- As a general rule, if the dimensionality is D, then number of points in the data, N, should be $N >> 2^D$.
- Otherwise, when kd-trees are used with high-dimensional data, most of the points in the tree will be evaluated and the efficiency is no better than exhaustive search.
- The problem of finding NN in high-dimensional data is thought to be NP-hard, and approximate nearest-neighbour methods are used instead.

High dimensionality

- Data often comes in high-dimensional form
- Curse of dimensionality
 - K-d tree nodes become empty after a few levels already...
- Everything is “far” from everything else
 - Difference along even one dimension makes them far from each other
Random Projection (RP) trees

Dmytro Fishman

Choose a random vector

Project all points on this vector

Choose a split point (median of projected points in this case)
This creates a partition of the original data into two subsets.

NB! We must store a random vector and the median at each node of the tree.

Again choose a random vector.

Project all points on this new vector.

Define a split.
Random projection tree (construction)

Repeat recursively until limit of points in each leaf is reached (3 in this case)

Random projection tree (search)

We need to find a query point

At each level of the tree we will project query point on a random vector and figure from which side of the median this projection lies
Random projection tree (search)

Random projection tree (search)

Random projection tree (search)

Random projection tree (search)

Methods average complexity

<table>
<thead>
<tr>
<th></th>
<th>Building Time</th>
<th>Search Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-d Tree</td>
<td>(O(n \log(n^2)))</td>
<td>(O(n \log(n) + nd))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>RP Tree</td>
<td>(O(nd \log(n)))</td>
<td>(O(nd \log(n)))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

Random projection trees and low dimensional manifolds by Dasgupta et al. (http://cseweb.ucsd.edu/~dasgupta/papers/rp-tree-stoc.pdf)

A(2, 4)
B(4, 2)
Random projection tree

\[?x + ? = y \]

B(6, 2)
A(2, 4)

Random projection tree

\[y - y_0 = (-m_{\text{perpendicular}})(x - x_0) \]

y
y

Random projection tree

\[2x - 5 = y \]

Random projection tree

\[\text{Places hyper planes between two arbitrary points each time dividing hyperspace into two equal parts} \]
\[\text{Also keeps track of number of points in the node} \]
See also (Wikipedia)

- implicit kd-tree
- min/max kd-tree
- Quadtree
- Octree
- Bounding Interval Hierarchy
- Nearest neighbor search
- Klee's measure problem
- kd-trie

Quadtree – divide area recursively to quadrants

Quadtree

- 2-dimensional
- 4 quadrants
- Either point or area based
Octree – 3D, 8 children

R-Tree

Variants

• R, R+, R*

Difference between R+ trees and R trees
R+ trees are a compromise between R trees and kd trees; they avoid overlapping of internal nodes by inserting an object into multiple leaves if necessary.

R+ trees differ from R trees in that:
• Nodes are not guaranteed to be at least half filled
• The entries of any internal node do not overlap
• An object ID may be stored in more than one leaf node

Advantages
Because nodes are not overlapped with each other, point query performance benefits since all spatial regions are covered by at most one node.
A single path is followed and fewer nodes are visited than with the R-tree

R* tree topological split
The pages overlap very little since the R*-tree tries to minimize page overlap, and the insertions further optimized the tree. The split strategy also does not prefer slices, the resulting pages are much more useful for common map applications.
Priority queue

- Insert Q, x

- Retrieve next x from Q s.t. x.value is largest

- Sorted list implementation:
 - $O(n)$ to insert x into right place
 - $O(1)$ access, $O(1)$ delete

Binary heap

- Complete — missing nodes only at the lowest level
- Heap property — on any path parent has higher priority
- Typically: min-heaps
- Priority queue:
 - $\text{insert}(Q, x)$
 - $\text{pop}(Q)$

Binary heap - Insert

- Insert into a next allowed place
- Make sure heap property is restored
Use Array based implementation

```c
left = i*2;
right = i*2 + 1;
parent = i/2;
```

Insert

```c
insert( int A[], int x, int *last) {
    (*last)++ ;
    A[*last] = x;
    bubbleUp( A, *last ) ;
}
```

Bubble up

```c
BubbleUp( int A[], int i) {
    while ( ( i>1 ) && A[i] > A[i/2] ){
        swap( A, i, i/2 ) ;
        i=i/2;
    }
}
```

Delete (max)

```c
void
swap( int A[], int i, int j ) {
    int tmp;
    tmp=A[i];
    A[i]=A[j];
    A[j]=tmp;
}
```

- Remove top value (make free space)
- Remove last element
- Insert to top value location, then bubble down to the correct place

Binary heap – Delete – “Bubble down”
Cost

- Insert – $O(\log n)$
- Delete – $O(\log n)$

Heap-sort

- Heapify the array
- while not empty
 - pop_largest
 - copy to next free place

![Heapify diagram]

Heapify... in linear time

- last n/2 – ignore
- n/4 - bubble down (at most by 1 level)
- n/8 – bubble down (at most by 2 levels)

$$\sum_{i=1}^{\log_2 n} \frac{in}{2^i} = \frac{n}{2} \sum_{i=1}^{\infty} \frac{in}{2^i}$$

1/2 + 1/4 + 1/8 + 1/16 + ... = 1
+ 1/4 + 1/8 + 1/16 + ... = 1/2
1/8 + 1/16 + ... = 1/4

... Sum = 2
Dynamic order statistics

- **OS-SELECT**(i, S): returns the i-th smallest element in the dynamic set S.
- **OS-RANK**(x, S): returns the rank of x ∈ S in the sorted order of S's elements.

Idea: Use a red-black tree for the set S, but keep subtree sizes in the nodes.

Notation for nodes:

```
key
size
```

Example of an OS-tree

```
size[x] = size[left[x]] + size[right[x]] + 1
```

Selection

- **Implementation trick:** Use a sentinel (dummy record) for NIL such that size[NIL] = 0.
- **OS-SELECT**(x, i) → i-th smallest element in the subtree rooted at x
 - if i = k then return x
 - if i < k
 - then return **OS-SELECT**(left[x], i)
 - else return **OS-SELECT**(right[x], i - k)

(OS-RANK is in the textbook.)
Example

OS-SELECT(root, 5)

Running time = $O(h) = O(\log n)$ for red-black trees.

Data structure maintenance

Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?

A. They are hard to maintain when the red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when inserting or deleting.

Example of insertion

INSERT(“K”)

Handling rebalancing

Don’t forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.
- Recolorings: no effect on subtree sizes.
- Rotations: fix up subtree sizes in $O(1)$ time.

Example:

Data-structure augmentation

Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-black trees).
2. Determine additional information to be stored in the data structure (subtree sizes).
3. Verify that this information can be maintained for modifying operations (RB-INSERT, RB-DELETE — don’t forget rotations).
4. Develop new dynamic-set operations that use the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Query: For a given query interval i, find an interval in the set that overlaps i.
In computer science, an interval tree, also called a segment tree or segtree, is an ordered tree data structure to hold intervals. Specifically, it allows one to efficiently find all intervals that overlap with any given interval or point. It is often used for windowing queries, for example, to find all roads on a computerized map inside a rectangular viewport, or to find all visible elements inside a three-dimensional scene.

The trivial solution is to visit each interval and test whether it intersects the given point or interval, which requires $O(n)$ time, where n is the number of intervals in the collection. Since a query may return all intervals, for example if the query is a large interval intersecting all intervals in the collection, this is asymptotically optimal; however, we can do better by considering output-sensitive algorithms, where the runtime is expressed in terms of m, the number of intervals produced by the query.

Example interval tree

$$m[x] = \max\left\{ \text{high}[\text{int}[x]], m[\text{left}[x]], m[\text{right}[x]] \right\}$$

Modifying operations

3. Verify that this information can be maintained for modifying operations.
 - INSERT: Fix m’s on the way down.
 - Rotations — Fixup = $O(1)$ time per rotation.

 Total INSERT time = $O(\log n)$; DELETE similar.

New operations

4. Develop new dynamic-set operations that use the information.

   ```
   INTERVAL-SEARCH(i)
   x ← root
   while x ≠ NIL and (low[i] > high[i])
   or low[m[high[i]]] > high[i])
   do i and inf[x] don’t overlap
   if left[x] ≠ NIL and low[i] ≤ m[low[x]]
   then x ← left[x]
   else x ← right[x]
   return x
   ```

Cases for overlap:

<table>
<thead>
<tr>
<th>Queries</th>
<th>Int(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max(tree)</th>
<th>Int(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: \textsc{Interval-Search}(\{14, 16\})

\begin{itemize}
 \item $x \leftarrow \text{root}$
 \item $[14, 16]$ and $[17, 19]$ don't overlap
 \item $14 \leq 18 \Rightarrow x \leftarrow \text{left}(x)$
\end{itemize}

Example 2: \textsc{Interval-Search}(\{12, 14\})

\begin{itemize}
 \item $x \leftarrow \text{root}$
 \item $[12, 14]$ and $[17, 19]$ don’t overlap
 \item $12 \leq 18 \Rightarrow x \leftarrow \text{left}(x)$
\end{itemize}
Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x’s right subtree.

- If the search goes right, then
 $$\{ i' \in L : i' \text{ overlaps } i \} = \emptyset.$$
- If the search goes left, then
 $$\{ i' \in L : i' \text{ overlaps } i \} = \emptyset \Rightarrow \{ i' \in R : i' \text{ overlaps } i \} = \emptyset.$$

In other words, it’s always safe to take only 1 of the 2 children: we’ll either find something, or nothing was to be found.

Proof. Suppose first that the search goes right.
- If $\text{left}[x] = \text{NIL}$, then we’re done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have $\text{low}[i] > m[\text{left}[x]]$. The value $m[\text{left}[x]]$ corresponds to the high endpoint of some interval $j \in L$, and no other interval in L can have a larger high endpoint than $\text{high}[j]$.

$$\text{high}[j] = m[\text{left}[x]]$$

$$\Rightarrow \{ i' \in L : i' \text{ overlaps } i \} = \emptyset.$$
Left:

\[m[\text{left}(x)] \]

Proof (continued)

Suppose that the search goes left, and assume that \(\{i' \in L : i' \text{ overlaps } i\} = \emptyset \).

- Then, the code dictates that \(\text{low}[i] \leq m[\text{left}(x)] = \text{high}[j] \) for some \(j \in L \).
- Since \(i \in L \), it does not overlap \(i \), and hence \(\text{high}[i] < \text{low}[j] \).
- But, the binary-search-tree property implies that for all \(j' \in R \), we have \(\text{low}[j] \leq \text{low}[j'] \).
- But then \(\{i' \in R : i' \text{ overlaps } i\} = \emptyset \).

Treap

- Tree + Heap = Treap
- BST + Heap

of (key,priority) pair at the same time.

Combining info: Treap

- Heap and binary search tree properties together
 - Treap
 - Red – heap
 - Blue – BST

A treap. Letters are search keys; numbers are priorities.

A geometric interpretation of the same treap.
Use rotations to “push up”

- Can be used to make a random-like tree: priorities can be assigned by random, unique values...
- In computer science, a **treap** is a binary search tree that orders the nodes by adding a random priority attribute to a node, as well as a key. The nodes are ordered so that the keys form a binary search tree and the priorities obey the max heap order property. The name treap is a portmanteau of **tree** and **heap**.
- A **portmanteau word** (pronounced /pɔːtˈmæntəʊ/ (help·info)) is used broadly to mean a **blend** of two (or more) words, and narrowly in **linguistics** fields to mean only a blend of two or more **function words**.

Bulk operations

- Union of two Treaps
- Intersection
- Set Difference
- These rely on two helper functions – **split** and **merge**

Split on k

- Insert (k, high_priority)
 - Left is smaller, right subtree larger than k

Vt zip trees 2019 essay

3 Related Work

A skip tree can be viewed as a treap but with a different choice of node and with different insertion and deletion algorithms. The choice of node in a skip tree reduces number of bits needed to represent the node from O(log n) to log^2 n + 0(n).

A treap tree can also be viewed as a skip list. There is a natural implementation between zip trees and skip lists (see Figure 2). A search in a skip list visits the same nodes as the search in the corresponding skip list, except that the latter can run twice as fast.
Advanced Algorithmics (6EAP)

MTAT.03.238

Trees – Union-Find

Jaak Vilo
2020 Fall

• Domain X = \{x_1, \ldots, x_n\}
• x_i belongs to a set S_j
• Non-intersecting sets.
• Union of sets: \(S_i = S_i \cup S_j\)
• Find: Which set \(S_i\) does an element \(x_j\) belong to?

• Sets = \{\{1\}, \{2\}, \ldots, \{n\}\}
• Non-overlapping, each value belongs to a set
• Merge sets \(i, j\) (give new set id \(i\), remove \(j\))
 – Union
• Which set does \(x\) belong to?
 – Find

Union-Find

\[
\begin{array}{cccccccc}
\text{Set} & 1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 \\
\text{Value} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Union 4, 6} & \text{s1} = \{3, 4\} & \text{s2} = \{6, 8\} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Find} = O(1) \\
\text{Union} = O(n) \\
\end{array}
\]

Link elements until “0”

\[
\begin{array}{cccccccc}
\text{Set} & 0 & 0 & 0 & 3 & 0 & 0 & 6 \\
\text{Value} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Union 4, 6} & \text{s1} = \{3, 4\} & \text{s2} = \{6, 8\} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Find} = O(n) \\
\text{Union} = O(1) \\
\end{array}
\]
At every find – “flatten the tree”

Union-Find

A data structure for maintaining a collection of disjoint sets

Course: Data Structures
Lecturer: Uri Zwick
March 2008

Union-Find

- **Make(x):** Create a set containing x
- **Union(x,y):** Unite the sets containing x and y
- **Find(x):** Return a representative of the set containing x

Union-Find

- **make** $O(1)$
- **union** $O(\alpha(n))$
- **find** $O(\alpha(n))$

Amortized

Fun applications: Generating mazes

<table>
<thead>
<tr>
<th>make(1)</th>
<th>make(2)</th>
<th>make(16)</th>
<th>find(6)=find(7) ?</th>
<th>union(6,7)</th>
<th>find(7)=find(11) ?</th>
<th>union(7,11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose edges in random order and remove them if they connect two different regions

Fun applications: Generating mazes

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
Generating mazes – a larger example

Construction time -- $O(n^2 \alpha(n^2))$

http://biit.cs.ut.ee/~vilo/Algorithmics/maze.cgi

More serious applications:

- Maintaining an equivalence relation
- Incremental connectivity in graphs
- Computing minimum spanning trees
- ...

Union Find

Represent each set as a rooted tree
Union by rank Path compression

The parent of a vertex v is denoted by $p[v]$.
Find(x) traces the path from x to the root

Union by rank

Union by rank on its own gives $O(\log n)$ find time
A tree of rank r contains at least 2^r elements
If x is not a root, then $\text{rank}(x) = \text{rank}(p[x])$
Path Compression

Union Find - pseudocode

Function `make-set(x)`
\[p(x) \leftarrow x \]
\[rank[x] \leftarrow 0 \]

Function `union(x, y)`
\[link(find(x), find(y)) \]

Function `find(x)`
\[
\begin{align*}
\text{if } p(x) \neq x \text{ then} \\
\text{let } p[p(x)] \leftarrow \text{find}(p[x]) \text{ then} \\
\text{return } p[x]
\end{align*}
\]

Function `link(x, y)`
\[
\begin{align*}
\text{if } rank[x] > rank[y] \text{ then} \\
\quad p[y] \leftarrow x \\
\text{else} \\
\quad p[x] \leftarrow y \\
\text{if } rank[x] = rank[y] \text{ then} \\
\quad \text{rank}[x] \leftarrow \text{rank}[x] + 1
\end{align*}
\]

Union-Find

<table>
<thead>
<tr>
<th>Worst case</th>
<th>make</th>
<th>link</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amortized</th>
<th>make</th>
<th>link</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>(O(\alpha(n)))</td>
<td>(O(\alpha(n)))</td>
<td></td>
</tr>
</tbody>
</table>

Nesting / Repeated application

\[
f^{(i)}(n) = f(f(\ldots(f(n))\ldots))
\]
i times

\[
f^{(0)}(n) = n
\]
\[
f^{(i)}(n) = f(f^{(i-1)}(n)), \text{ for } i > 0
\]

\[
f(n) = n + 1
\]
\[
f^{(0)}(n) = n + 5
\]
\[
f(n) = 2n
\]
\[
f^{(7)}(n) = 2^n n
\]
\[
f(n) = 2^n
\]
\[
f^{(3)}(n) = 2^{2^n}
\]
\[
f(n) = \log n
\]
\[
f^{(2)}(n) = \log \log n
\]

Ackermann’s function

\[
A_k(n) = \begin{cases}
 n + 1 & \text{if } k = 1, \\
 A_{k-1}^{n+1}(n) & \text{if } k > 1.
\end{cases}
\]

\[
A_1(n) = n + 1
\]
\[
A_2(n) = 2n + 1
\]
\[
A_3(n) = 2^{n+1}(n + 1) - 1
\]
\[
A_4(n) = ?
\]

Ackermann’s function (modified)

\[
\tilde{A}_k(n) = \begin{cases}
 n + 1 & \text{if } k = 1, \\
 \tilde{A}_{k-1}^{n+1}(n) & \text{if } k > 1.
\end{cases}
\]

\[
\tilde{A}_2(n) = 2n
\]
\[
\tilde{A}_3(n) = 2^n
\]
\[
\tilde{A}_4(n) = \text{tower}(n) = 2^{2^{\ldots^2}}
\]

\[
\tilde{A}_2(n) = 2n
\]
\[
\tilde{A}_3(n) = 2^n
\]
\[
\tilde{A}_4(n) = \text{tower}(n) = 2^{2^{\ldots^2}}
\]
Inverse functions

\[F(n) \implies f(n) = \min\{k \geq 1 \mid F(k) \geq n\} \]

- \(F(n) = n + 1 \quad f(n) = n - 1 \)
- \(F(n) = 2n \quad f(n) = \lceil \frac{n}{2} \rceil \)
- \(F(n) = 2^n \quad f(n) = \log_2 n \)
- \(F(n) = \text{tower}(n) \quad f(n) = \log^* n \)

Inverse Ackermann function

\[\alpha_r(n) = \min\{k \geq 1 \mid A_k(r) \geq n\} \]

\[\alpha(n) = \alpha_1(n) = \min\{k \geq 1 \mid A_k(1) \geq n\} \]

\(\alpha(n) \) is the inverse of the function \(A_n(1) \)

\[A_n(1) = A_{n-1}(A_{n-1}(1)) > A_{n-1}(n) \]

The first "column"

Amortized cost of make

Actual cost: \(O(1) \)
\[\Delta \Phi: \quad 0 \]

Amortized cost: \(O(1) \)

Amortized cost of link

Actual cost: \(O(1) \)

The potentials of \(y \) and \(z_1, \ldots, z_k \) can only decrease

The potentials of \(x \) is increased by at most \(o(n) \)
\[\Delta \Phi \leq o(n) \]

Actual cost: \(O(o(n)) \)

Amortized cost of find

Suppose that:

\[0 < i < j < \ell \]

\[\text{level}(x_i) = \text{level}(x_j) \]

\[A^{(\text{index}(x_i)+1)}_{\text{level}(x_i)}(\text{rank}[x_i]) \]

\[\leq A_{\text{level}(x_i)}(A^{\text{index}(x_i)}_{\text{level}(x_i)}(\text{rank}[x_i])) \]

\[\leq A_{\text{level}(x_i)}(\text{rank}[p[x_i]]) \]

\[\leq A_{\text{level}(x_i)}(\text{rank}[x_j]) \]

\[\leq \text{rank}[x_j] \]

\(x \) is decreased!
The only nodes that can retain their potential are: the first, the last and the last node of each level.

Actual cost: $l+1$

\[\Delta \Phi \leq (\alpha(n)+1) - (l+1) \]

Amortized cost: $\alpha(n)+1$