Suppose that Z is the information-theoretical optimal number of bits needed to store some data. A representation of this data is called

- **implicit** if it takes $Z + O(1)$ bits of space,
- **succinct** if it takes $Z + o(Z)$ bits of space, and
- **compact** if it takes $O(Z)$ bits of space.

Succinct Representations of Trees

S. Srinivasra Rao

Seoul National University

Outline

- Succinct data structures
 - Introduction
 - Examples
- Tree representations
 - Motivation
 - Heap-like representation
 - Jacobson’ s representation
 - Parenthesis representation
 - Partitioning method
 - Comparison and Applications
- Rank and Select on bit vectors

Succinct data structures

- Goal: represent the data in close to optimal space, while supporting the operations efficiently.
 (optimal --- information-theoretic lower bound)

 Introduced by [Jacobson, FOCS ’89]

- An “extension” of data compression.
 (Data compression:
 - Achieve close to optimal space
 - Queries need not be supported efficiently)
Applications

- Potential applications where
 - memory is limited: small memory devices like PDAs, mobile phones etc.
 - massive amounts of data: DNA sequences, geographical/astronomical data, search engines etc.

Examples

- Trees, Graphs
- Bit vectors, Sets
- Dynamic arrays
- Text indexes
 - suffix trees/suffix arrays etc.
- Permutations, Functions
- XML documents, File systems (labeled, multi-labeled trees)
- DAGs and BDDs
- ...

Example: Text Indexing

A text string T of length n over an alphabet Σ can be represented using

- $n \log |\Sigma| + o(n \log |\Sigma|)$ bits,
 (or the even the k-th order entropy of T)

to support the following pattern matching queries (given a pattern P of length m):
- count the # occurrences of P in T,
- report all the occurrences of P in T,
- output a substring of T of given length in almost optimal time.

Example: Compressed Suffix Trees

Given a text string T of length n over an alphabet Σ, one store it using $O(n \log |\Sigma|)$ bits, to support all the operations supported by a standard suffix tree such as pattern matching queries, suffix links, string depths, lowest common ancestors etc. with slight slowdown.

- Note that standard suffix trees use $O(n \log n)$ bits.

Example: Permutations

A permutation π of $1, \ldots, n$

<table>
<thead>
<tr>
<th>n bits</th>
<th>$n \log n$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(\pi)$ in $O(1)$ time</td>
<td>$s^{-1}(\pi)$ in $O(n)$ time</td>
</tr>
</tbody>
</table>

$\pi(1)=6 \quad \pi^{-1}(1)=5$

Succinct representation:

- $(1+n) \log n$ bits
- $s(\pi)$ in $O(1)$ time
- $s^{-1}(\pi)$ in $O(n)$ time ("optimal" trade-off)
- $s^k(\pi)$ in $O(1/k)$ time (for any positive or negative integer k)
- $\log (n!) + o(n)$ (< $n \log n$) bits (optimal space)
- $s^k(\pi)$ in $O(\log n / \log \log n)$ time

<table>
<thead>
<tr>
<th>$n!$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \log n$</td>
</tr>
</tbody>
</table>

| π: |
| 6 5 2 8 1 3 4 7 |

Example: Memory model

- Word RAM model with word size $\Theta(\log n)$ supporting
 - read/write
 - addition, subtraction, multiplication, division
 - left/right shifts
 - AND, OR, XOR, NOT
 - operations on words in constant time.

(n is the "problem size")
Succinct Tree Representations

Motivation

Trees are used to represent:
- Directories (Unix, all the rest)
- Search trees (B-trees, binary search trees, digital trees or tries)
- Graph structures (we do a tree based search)
- Search indexes for text (including DNA)
 - Suffix trees
- XML documents
 - ...

Drawbacks of standard representations

- Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.
- In various applications, one would like to support operations like “subtree size” of a node, “least common ancestor” of two nodes, “height”, “depth” of a node, “ancestor” of a node at a given level etc.

Drawbacks of standard representations

- The space used by the tree structure could be the dominating factor in some applications.
 - Eg. More than half of the space used by a standard suffix tree representation is used to store the tree structure.
 - "A pointer-based implementation of a suffix tree requires more than 20n bytes. A more sophisticated solution uses at least 12n bytes in the worst case, and about 6n bytes in the average. For example, a suffix tree built upon 700Mb of DNA sequences may take 40Gb of space.”
 -- Handbook of Computational Molecular Biology, 2006

Standard representation

Binary tree:
each node has two pointers to its left and right children

An n-node tree takes
2n pointers or 2n lg n bits
(can be easily reduced to n lg n + O(n) bits).

Supports finding left child or right child of a node
(in constant time).

For each extra operation (eg. parent, subtree size) we have to pay, roughly, an additional n lg n bits.

Can we improve the space bound?

- There are less than 2^n distinct binary trees on n nodes.
 - "The Art of Computer Programming", Volume 4, Fascicle 4: Generating all trees
- $2n$ bits are enough to distinguish between any two different binary trees.
- Can we represent an n node binary tree using $2n$ bits?
How Many Binary Trees Are There?

There are five distinct shapes of binary trees with three nodes:

But how many are there for n nodes?

Let C(n) be the number of distinct binary trees with n nodes. This is equal to the number of trees that have a root, a left subtree with (n-1) nodes, and a right subtree with (n-1) nodes, for each. That is,

\[C(n) = C(0)C(n-1) + C(1)C(n-2) + \ldots + C(n-1)C(0) \]

which is

\[C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} C_k C_{n-k} \quad \text{for} \quad n \geq 3. \]

http://cs.lmu.edu/~ray/notes/binarytrees/

Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1
and external nodes with a 0

Write the labels in level order

One can reconstruct the tree from this sequence

An n node binary tree can be represented in \(2n+1\) bits.

What about the operations?

The first few terms:

\[
\begin{align*}
C(0) &= 1 \\
C(1) &= C(0)C(1) = 1 \\
C(2) &= C(0)C(2) + C(1)C(1) = 2 \\
C(3) &= C(0)C(3) + C(1)C(2) + C(2)C(1) = 5 \\
C(4) &= C(0)C(4) + C(1)C(3) + C(2)C(2) + C(3)C(1) = 14 \\
\end{align*}
\]

You can prove

\[C_n = \frac{1}{n+1} \binom{2n}{n} \quad \text{for} \quad n \geq 8. \]

Here’s the number of 8-node binary trees:

\[
\begin{array}{c|c|c|c|c|c|c|c}
1 & 16! & 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \\
9 & 8! & 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
\end{array}
\]

Also see Wikipedia’s article on the Catalan Numbers.

Heap-like notation for a binary tree

left child(x) = \[2x\]
right child(x) = \[2x+1\]
parent(x) = \[\lfloor x/2 \rfloor\]

EXAMPLE 2 (JV)

Example of a binary tree with labels

COLOR

\[
\begin{align*}
x &\rightarrow x: \# 1’s \ up \ to \ x \\
x &\rightarrow x: \ position \ of \ x-th \ 1
\end{align*}
\]

COLOR

\[
\begin{align*}
1 & 2 3 4 5 6 7 8 \\
1 & 1 1 1 0 1 1 0 1 \\
1 & 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
\end{align*}
\]
Example 2 (JV)

Node: 1 2 3 4 5 6

BitVector: 1 0 1 0 1 0 1 1 0 0 0 0

Bvrank: 1 2 3 4 5 6 7 8 9

10 11 12 13

Rchild(5) = Rank((2^4 + 1)) = 6

Example 2 (JV)

Node: 1 2 3 4 5 6

BitVector: 1 0 1 0 1 0 1 1 1 0 0 0 0

Bvrank: 1 2 3 4 5 6 7 8 9

10 11 12 13

Parent(5) = 1

4th node is at index 7

Rank/Select on a bit vector

Given a bit vector B

$rank_i() = \# 1's$ up to position i in B

$select_i() = \text{position of the } i\text{-th } 1\text{ in } B$

(similarly $rank_0$ and $select_0$)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

$B: \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1$

Given a bit vector of length n, by storing an additional $o(n)$-bit structure, we can support all four operations in $O(1)$ time.

An important substructure in most succinct data structures.
Implementations: [Kim et al.], [Gonzalez et al.], ...

Binary tree representation

- A binary tree on n nodes can be represented using $2n + o(n)$ bits to support:
 - parent
 - left child
 - right child

 in constant time.

[Jacobson '89]

Supporting Rank

- Store the rank up to the beginning of each block: $(m/b) \log m$ bits
- Store the 'rank within the block' up to the beginning of each sub-block: $(m/b)(b/s) \log b$ bits
- Store a precomputed table to find the rank within each sub-block: $2^s \log s$ bits

Supports rank in constant time.

- Select can also be supported in constant time using an auxiliary structure of size $O(m \log \log m / \log m)$ bits.

[Clark-Munro '96] [Raman et al. '01]

http://alexbowe.com/rrr/ -> RRR succinct rank/select index...

Rank/Select on bit vector

- Choosing $b = (\log m)^2$, and $s = (1/2) \log n$
 makes the overall space to be $O(m \log \log m / \log m) = o(m)$ bits.
- Supports rank in constant time.
- Select can also be supported in constant time using an auxiliary structure of size $O(m \log \log m / \log m)$ bits.

[Clark-Munro '96] [Raman et al. '01]

http://alexbowe.com/rrr/ -> RRR succinct rank/select index...
Lower bounds for rank and select

- If the bit vector is read-only, any index (auxiliary structure) that supports rank or select in constant time (in fact in $O(\log m)$ bit probes) has size $\Omega(m \log \log m / \log m)$

[Miltersen ’05] [Golynski ’06]

Space measures

- Bit-vector (BV):
 - space used be $m + o(m)$ bits.

- Bit-vector index:
 - bit-sequence stored in read-only memory
 - index of $o(m)$ bits to assist operations

- Compressed bit-vector: with n 1’s
 - space used should be $B(m,n) + o(m)$ bits.

$$B(m,n) = \left\lceil \log \binom{m}{n} \right\rceil$$

Results on Bitvectors

- Elias (JACM 74)
- Jacobson (FOCS 89)
- Clark+Munro (SODA 96)
- Pagh (SICOMP 01)
- Raman et al (SODA 02)
- Miltersen (SODA 04)
- Golynski (ICALP 06)
- Gupta et al. (Entry in Encyclopaedia of Algorithms)

Ordered trees

- A binary tree representation taking $2n+o(n)$ bits that supports parent, left child and right child operations in constant time.

- There is a one-to-one correspondence between binary trees (on n nodes) and rooted ordered trees (on $n+1$ nodes).

- Gives an ordered tree representation taking $2n+o(n)$ bits that supports first child, next sibling (but not parent) operations in constant time.

- We will now consider ordered tree representations that support more operations.

Ordered trees?

A rooted ordered tree (on n nodes):

Navigational operations:
- parent(x) = a
- first child(x) = b
- next sibling(x) = c

Other useful operations:
- degree(x) = 2
- subtree size(x) = 4

Level-order degree sequence

Write the degree sequence in level order

3 2 0 3 0 1 0 2 0 0 0 0 0

But, this still requires $n \lg n$ bits

Solution: write them in unary

1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0

Takes $2n-1$ bits

A tree is uniquely determined by its degree sequence.
10/7/16

Supporting operations
Add a dummy root so that each node has a corresponding 1

Level-order unary degree sequence
- Space: $2n + o(n)$ bits
- Supports
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - in constant time.

Does not support subtree size operation.

[Jacobson '89]
[Implementation: Delpratt-Rahman-Raman '06]

Another approach
Write the degree sequence in depth-first order

Depth-first unary degree sequence (DFUDS)
- Space: $2n + o(n)$ bits
- Supports
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - subtree size
 - in constant time.

[Benoit et al. '05] [Jansson et al. '07]

Other useful operations
XML based applications:
- $\text{level ancestor}(x,l)$: returns the ancestor of x at level l
 - eg. $\text{level ancestor}(11,2) = 4$

Suffix tree based applications:
- $\text{LCA}(x,y)$: returns the least common ancestor of x and y
 - eg. $\text{LCA}(7,12) = 4$

Parenthesis representation
Associate an open-close parenthesis-pair with each node
Visit the nodes in pre-order, writing the parentheses

- length: $2n$
- space: $2n$ bits

One can reconstruct the tree from this sequence

((() ()) (() () () ()))
Parenthesis representation

- **Space:** $2n+o(n)$ bits
- **Supports:**
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor
 - leftmost/rightmost leaf
 - number of nodes in the subtree

in constant time.

A different approach

- If we group k nodes into a block, then pointers with the block can be stored using only $\lg k$ bits.

- For example, if we can partition the tree into n/k blocks, each of size k, then we can store it using $(n/k) \cdot \lg n + (n/k) \cdot k \cdot \lg k = (n/k) \cdot \lg n + n \cdot \lg k$ bits.

A careful two-level ‘tree covering’ method achieves a space bound of $2n+o(n)$ bits.

Tree covering method

- **Space:** $2n+o(n)$ bits
- **Supports:**
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor
 - leftmost/rightmost leaf
 - number of nodes in the subtree
 - pre/post order number
 - i-th child

in constant time.

Ordered tree representations

<table>
<thead>
<tr>
<th>LOUDS</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFUDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAREN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTITION</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unified representation

- **A single representation that can emulate all other representations.**

- **Result:** A $2n+o(n)$ bit representation that can generate an arbitrary word ($O(\log n)$ bits) of DFUDS, PAREN or PARTITION in constant time

- **Supports the union of all the operations supported by each of these three representations.**

[Farzan et al. '09]
Applications

- Representing
 - suffix trees
 - XML documents (supporting XPath queries)
 - file systems (searching and Path queries)
 - representing BDDs
 - ...

Open problems

- Making the structures dynamic (there are some existing results)
- Labeled trees (two different approaches supporting different sets of operations)
- Other memory models
 - External memory model (a few recent results)
 - Flash memory model
 - (So far mostly RAM model)

I/O Model [AV88]

Parameters

- N: Elements in structure
- B: Elements per block
- M: Elements in main memory

References

- Jacobson, FOCS 89
- Munro-Raman-Rao, FSTTCS 98 (JAlg 01)
- Benoit et al., WADS 99 (Algorithmica 05)
- Lu et al., SODA 01
- Sadakane, ISSAC 01
- Geary-Raman-Raman, SODA 04
- Munro-Rao, ICALP 04
- Jansson-Sadakane, SODA 06

Implementation:

- Geary et al., CPM 04
- Kim et al., WEA 05
- Gonzalez et al., WEA 05
- Delpratt-Rahman-Raman., WAE 06

Thank You