Advanced Algorithmics (6EAP) Project proposals

Jaak Vilo
2014 Fall
Key info

• Project = 1-2-3 person teams
• Poster session: XXXXXX
 – 2pm - room YYYYY
 – Poster file (PDF?) has to be uploaded before
• Prerequisite for exam
Expectations:

- Study the problem
- Implement, Evaluate, Compare, Measure, ...
- Your task is to make the project interesting to others: right questions; cool applications; novel ideas; desire to read; materials to complement next year courses.

- Find a clear objective and focus, state it, study it!
- 20-40h / per person
- Report – Poster
Tasks

• Here is a list of some proposals

• You can propose your own.

• Or select some on your own
 – from international competitions
 • e.g. IOI (ACM) olympics finals series
 • implementation challenges from DIMACS, etc.
 • etc.
• Compare some alternative algorithms, and try to improve on them
• Take a problem and try to apply algorithmic problems to solve it
• Take an algorithm from the literature, implement and test
• Find cool ways to study/visualise algorithmic ideas presented in the course.
• Optimisation using different heuristics
 – **Complex fitness functions** (layout, MDL, etc)
 – Game-playing engines
 – Differential Evolution
• Data structures and speed comparisons
• Succinct data structures – bitlist, tree, graph
Succinct data structures

• Test in practice the size and speed for some succinct data structures (binary search trees, heaps ...)

• Could you support some (any) dynamic update operations? Which kind? What would be needed basic operations for updates? (however bad the time is)
Clustering using Differential Evolution

• Define an objective function
• Define a numeric vector representing a clustering
• Optimise the objective function using differential result
• Report the types of clusters discovered, time and convergence, strengths and weaknesses as compared to other standard clustering methods
Combinatorial search (BFS)

- **Optimal** solution from a particular (or any) state of a 2x2x2 cube
- A* algorithm ???

- “Discover” the short assembly step algorithms
- Provide solutions
Formula maximisation/minimisation

- Floating point numbers,

- Generic cases...
Generic Regression

• Fitting a generic formula to data...

• Find relationships between variables, expressed not only in linear regression, but multiplications, divisions, squares, etc...
 – Limit to a small subset,
 – Robust – exclude outliers...
GPS navi

- Free map
- Calculate and visualise shortest paths...
Graph layout

- Graph layout
 - “Physical Spring model” with some extra added constraints or specialised nodes for stars, cliques, connection strength, etc.

- Create a nr of criteria and try to minimize nr of crossings, area of graph, etc.
Locality Sensitive Hashing

- http://www.stanford.edu/class/cs246/slides/03-lsh.pdf
Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]
Constrained Spring Embedding Layout

• Define certain areas (or lines, etc) that “attract” nodes. Allow graph to “layout” itself dynamically.
TSP variant, but with physical laws of velocity...
Visit all cities... - physically!

http://cswww.essex.ac.uk/staff/sml/gecco/PTSPComp.html
http://algoval.essex.ac.uk/ptsp/ptsp.html
• 652, 652
• 648, 636
Vector formula optimisation

Final result:
A* algorithm mixed with focused wavefront expansion. When “not knowing the track” idea failed, we decided to use wave front path-planning along with A* algorithm. The resulting algorithm covers racetrack with calculated weights from finish to start and then trying to find the trajectory with best-first search, moving to smaller weights. When failing the algorithm turns back and chooses the second best possible heading.

Calculating weights:
Starting from finish line, every not yet marked cell on the track gets a weight. On every next wave the previously weighted cells orthogonal neighbors get the value +3. After orthogonal weighting the calculated same cells diagonal neighbors are assigned with value +4.

First objective was to find the best trajectory by knowing nothing about the track ahead.

A*, depth-first search:
Finding the fastest trajectory. If car drives out of the track, the speed and/or steering

Visualization
Search results are represented visually using C++ OpenGL.
Perfect!
You completed the level.
Moves: 24 (Best: 24)
Time: 29.54s (Best: 15.01s)

next
Again
Seriation

- [Link](http://courses.cs.ut.ee/2009/dm/Main/HW04)
- Serialise matrices
- (2-way)
- Select “best” rows, cluster those
- Ordering rows and columns to reveal modules/areas of high “coherence”

51 genes total. Used datasets:

1. A gene expression signature identifies two prognostic subgroups of basal breast cancer (E-GEOD-21653)
Alizadeh et al., Nature 403:503-11, 2000
Results

Handpicked datasets: ✓-✓; X-✗; --✓; *-X; reset all | 70 datasets used in query (110 excluded by filters)
Query of OCT4 (POU5F1) (210265_X_AT)

StdDev < 0.29
Query of OCT4 (POU5F1)
(210265_X_AT: 50 top StdDev datasets in query)
Some algorithmic competition

• Test your skills on some algorithmic competition
Finally, 15,000 pages later:

Current SAT solvers solve this instance in approx. 1 minute!

Combinatorial search space of truth assignments: How?

\[2^{50000} \approx 3.160699437 \cdot 10^{15051} \]

Current SAT solvers solve this instance in approx. 1 minute!
Your own projects

• Ask a question
• Study literature
• Propose solution
• Implement
• Experiment and report results of experiments
Evolving patterns or snowflakes