Advanced Algorithmics (6EAP)

MTAT.03.238

Succinct Trees

Jaak Vilo

Thanks to S. Srinivasa Rao

2014
Suppose that \(Z \) is the information-theoretical optimal number of bits needed to store some data. A representation of this data is called

- **implicit** if it takes \(Z + O(1) \) bits of space,
- **succinct** if it takes \(Z + o(Z) \) bits of space, and
- **compact** if it takes \(O(Z) \) bits of space.

Succinct Representations of Trees

S. Srinivasa Rao

Seoul National University
Outline

- Succinct data structures
 - Introduction
 - Examples

- Tree representations
 - Motivation
 - Heap-like representation
 - Jacobson’s representation
 - Parenthesis representation
 - Partitioning method
 - Comparison and Applications

- Rank and Select on bit vectors
Succinct data structures

- Goal: represent the data in close to optimal space, while supporting the operations efficiently.
 (optimal -- information-theoretic lower bound)

Introduced by [Jacobson, FOCS '89]

- An “extension” of data compression.
 (Data compression:
 - Achieve close to optimal space
 - Queries need not be supported efficiently)
Applications

- Potential applications where
 - memory is limited: small memory devices like PDAs, mobile phones etc.
 - massive amounts of data: DNA sequences, geographical/astronomical data, search engines etc.
Examples

- Trees, Graphs
- Bit vectors, Sets
- Dynamic arrays
- Text indexes
 - suffix trees/suffix arrays etc.
- Permutations, Functions
- XML documents, File systems (labeled, multi-labeled trees)
- DAGs and BDDs
- ...
Example: Text Indexing

- A text string T of length n over an alphabet Σ can be represented using
 - $n \log |\Sigma| + o(n \log |\Sigma|)$ bits,
 (or the even the k-th order entropy of T)

 to support the following pattern matching queries (given a pattern P of length m):
 - count the # occurrences of P in T,
 - report all the occurrences of P in T,
 - output a substring of T of given length

 in almost optimal time.
Example: Compressed Suffix Trees

- Given a text string T of length n over an alphabet Σ, one store it using $O(n \log |\Sigma|)$ bits, to support all the operations supported by a standard suffix tree such as pattern matching queries, suffix links, string depths, lowest common ancestors etc. with slight slowdown.

- Note that standard suffix trees use $O(n \log n)$ bits.
Example: Permutations

A permutation \(\pi \) of 1,...,\(n \)

A simple representation:
- \(n \lg n \) bits
 - \(\pi(i) \) in \(O(1) \) time
 - \(\pi^{-1}(i) \) in \(O(n) \) time

Succinct representation:
- \((1+\varepsilon) n \lg n \) bits
 - \(\pi(i) \) in \(O(1) \) time
 - \(\pi^{-1}(i) \) in \(O(1/\varepsilon) \) time (`optimal’ trade-off)
 - \(\pi^k(i) \) in \(O(1/\varepsilon) \) time (for any positive or negative integer \(k \))

- \(\lg (n!) + o(n) \) (< \(n \lg n \) bits (optimal space)
 - \(\pi^k(i) \) in \(O(\lg n / \lg \lg n) \) time

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\pi: & 6 & 5 & 2 & 8 & 1 & 3 & 4 & 7 \\
\end{array}
\]
Memory model

- Word RAM model with word size $\Theta(\log n)$ supporting
 - read/write
 - addition, subtraction, multiplication, division
 - left/right shifts
 - AND, OR, XOR, NOT

operations on words in constant time.

(n is the “problem size”)
Succinct Tree Representations
Motivation

Trees are used to represent:

- **Directories** (Unix, all the rest)
- **Search trees** (B-trees, binary search trees, digital trees or *tries*)
- **Graph structures** (we do a tree based search)
- **Search indexes for text** (including DNA)
 - Suffix trees
- **XML documents**
- ...
Drawbacks of standard representations

- Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.

- In various applications, one would like to support operations like “subtree size” of a node, “least common ancestor” of two nodes, “height”, “depth” of a node, “ancestor” of a node at a given level etc.
Drawbacks of standard representations

- The space used by the tree structure could be the dominating factor in some applications.
 - Eg. More than half of the space used by a standard suffix tree representation is used to store the tree structure.
 - “A pointer-based implementation of a suffix tree requires more than $20n$ bytes. A more sophisticated solution uses at least $12n$ bytes in the worst case, and about $8n$ bytes in the average. For example, a suffix tree built upon 700Mb of DNA sequences may take 40Gb of space.”
 -- Handbook of Computational Molecular Biology, 2006
Standard representation

Binary tree: each node has two pointers to its left and right children

An n-node tree takes $2n$ pointers or $2n \lg n$ bits (can be easily reduced to $n \lg n + \mathcal{O}(n)$ bits).

Supports finding left child or right child of a node (in constant time).

For each extra operation (e.g., parent, subtree size) we have to pay, roughly, an additional $n \lg n$ bits.
Can we improve the space bound?

- There are less than 2^{2n} distinct binary trees on n nodes.
 - "The Art of Computer Programming", Volume 4, Fascicle 4: *Generating all trees*

- $2n$ bits are enough to distinguish between any two different binary trees.

- Can we represent an n node binary tree using $2n$ bits?
How Many Binary Trees Are There?

There are five distinct shapes of binary trees with three nodes:

But how many are there for n nodes?

Let $C(n)$ be the number of distinct binary trees with n nodes. This is equal to the number of trees that have a root, a left subtree with j nodes, and a right subtree of $(n-1)-j$ nodes, for each j. That is,

$$C(n) = C(0)C(n-1) + C(1)C(n-2) + \ldots + C(n-1)C(0)$$

which is

$$C_0 = 1 \quad \text{and} \quad C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i} \quad \text{for} \quad n \geq 1.$$
The first few terms:
\[
\begin{align*}
c(0) &= 1 \\
c(1) &= c(0)c(0) = 1 \\
c(2) &= c(0)c(1) + c(1)c(0) = 2 \\
c(3) &= c(0)c(2) + c(1)c(1) + c(2)c(0) = 5 \\
c(4) &= c(0)c(3) + c(1)c(2) + c(2)c(1) + c(3)c(0) = 14
\end{align*}
\]

You can prove
\[
c_n = \frac{1}{n+1} \binom{2n}{n} \quad \text{for } n \geq 0.
\]

Here's the number of 8-node binary trees:
\[
\begin{array}{cccc}
1 & 16! & 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \\
c(8) = \frac{1}{9} \times \frac{8!}{8!} & = \frac{13 \times 11 \times 10}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} & = 1430
\end{array}
\]

Also see [Wikipedia's article on the Catalan Numbers](https://en.wikipedia.org/wiki/Catalan_number).
Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1 and external nodes with a 0

Write the labels in level order

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

One can reconstruct the tree from this sequence

An n node binary tree can be represented in $2n+1$ bits.

What about the operations?
Heap-like notation for a binary tree

left child(x) = \lfloor 2x \rfloor
right child(x) = \lfloor 2x + 1 \rfloor
parent(x) = \lfloor \lfloor x/2 \rfloor \rfloor

x \rightarrow x: \# \text{ 1's up to } x
x \rightarrow x: \text{ position of } x\text{-th 1}
Example 2 (JV)

Node

BitVector

Bvrank

Rchild() = Rank \(\lfloor \frac{2 \times 4 + 1}{2} \rfloor = 6 \)
Example 2 (JV)

Node= 1 2 3 4 5 6
BitVector= 1 0 1 0 1 0 1 1 1 0 0 0 0
Bvrank= 1 2 3 4 5 6 7 8 9 10 11 12 13

Parent(5) =

=> 8 => 4th node

4th node is at index 7
Rank/Select on a bit vector

Given a bit vector B

$\text{rank}_1(i) = \# \text{ 1's up to position } i \text{ in } B$

$\text{select}_1(i) = \text{position of the } i\text{-th 1 in } B$

(similarly rank_0 and select_0)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>B:</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Given a bit vector of length n, by storing an additional $o(n)$-bit structure, we can support all four operations in $O(1)$ time.

<table>
<thead>
<tr>
<th></th>
<th>$\text{rank}_1(5)$</th>
<th>$\text{select}_1(4)$</th>
<th>$\text{rank}_0(5)$</th>
<th>$\text{select}_0(4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

An important substructure in most succinct data structures.

Implementations: [Kim et al.], [Gonzalez et al.], ...
Binary tree representation

- A binary tree on \(n \) nodes can be represented using \(2n+o(n) \) bits to support:
 - parent
 - left child
 - right child

 in constant time.

[Jacobson '89]
Supporting Rank

- Store the rank up to the beginning of each block: \((m/b) \log m\) bits
- Store the `rank within the block’ up to the beginning of each sub-block: \((m/b)(b/s) \log b\) bits
- Store a pre-computed table to find the rank within each sub-block: \(2^s s \log s\) bits
Rank/Select on bit vector

- Choosing $b = (\log m)^2$, and $s = (1/2)\log n$ makes the overall space to be $O(m \log\log m / \log m)$ ($= o(m)$) bits.

- Supports rank in constant time.

- Select can also be supported in constant time using an auxiliary structure of size $O(m \log\log m / \log m)$ bits.

[Clark-Munro ‘96] [Raman et al. ‘01]
Lower bounds for rank and select

- If the bit vector is read-only, any index (auxiliary structure) that supports rank or select in constant time (in fact in $O(\log m)$ bit probes) has size $\Omega(m \log\log m / \log m)$

[Miltersen ‘05] [Golynski ‘06]
Space measures

- Bit-vector (BV):
 - space used be $m + o(m)$ bits.

- Bit-vector index:
 - bit-sequence stored in read-only memory
 - index of $o(m)$ bits to assist operations

- Compressed bit-vector: with n 1’s
 - space used should be $B(m,n) + o(m)$ bits.

\[
B(m,n) = \left\lceil \log \binom{m}{n} \right\rceil
\]
Results on Bitvectors

- Elias (JACM 74)
- Jacobson (FOCS 89)
- Clark+Munro (SODA 96)
- Pagh (SICOMP 01)
- Raman et al (SODA 02)
- Miltersen (SODA 04)
- Golynski (ICALP 06)
- Gupta et al.

Implementations:
- Geary et al. (TCS 06)
- Kim et al. (WEA 05)
- Delpratt et al. (WEA 06, SOFSEM 07)
- Okanohara+Sadakane (ALENEX 07)

(Entry in Encyclopaedia of Algorithms)
Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:
- parent(x) = a
- first child(x) = b
- next sibling(x) = c

Other useful operations:
- degree(x) = 2
- subtree size(x) = 4
Ordered trees

- A binary tree representation taking $2n + o(n)$ bits that supports parent, left child and right child operations in constant time.

- There is a one-to-one correspondence between binary trees (on n nodes) and rooted ordered trees (on $n+1$ nodes).

- Gives an ordered tree representation taking $2n + o(n)$ bits that supports first child, next sibling (but not parent) operations in constant time.

- We will now consider ordered tree representations that support more operations.
Level-order degree sequence

Write the degree sequence in level order

3 2 0 3 0 1 0 2 0 0 0 0

But, this still requires $n \log n$ bits

Solution: write them in unary

1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0

Takes $2n-1$ bits

A tree is uniquely determined by its degree sequence
Supporting operations

Add a dummy root so that each node has a corresponding parent.

The bit sequence is:

```
1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0
```

1 2 3 4 5 6 7 8 9 10 11 12

Node k corresponds to the k-th 1 in the bit sequence.

$\text{parent}(k) = \# \text{ 0's up to the } k\text{-th 1}$

Children of k are stored after the k-th 0.

Supports: parent, i-th child, degree

(Using rank and select)
Level-order unary degree sequence

- Space: $2n + o(n)$ bits

- Supports
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - in constant time.

Does not support subtree size operation.

[Jacobson ‘89]
[Implementation: Delpratt-Rahman-Raman ‘06]
Another approach

Write the degree sequence in depth-first order

3 2 0 1 0 0 3 0 2 0 0 0

In unary:

1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0

Takes $2n-1$ bits.

The representation of a subtree is together.

Supports subtree size along with other operations. (Apart from rank/select, we need some additional operations.)
Depth-first unary degree sequence (DFUDS)

- Space: $2n+o(n)$ bits

- Supports
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - subtree size
 in constant time.

[Benoit et al. ‘05] [Jansson et al. ‘07]
Other useful operations

XML based applications:

level ancestor(x,l): returns the ancestor of x at level l

eg. level ancestor(11,2) = 4

Suffix tree based applications:

LCA(x,y): returns the least common ancestor of x and y

eg. LCA(7,12) = 4
Parenthesis representation

Associate an open-close parenthesis-pair with each node

Visit the nodes in pre-order, writing the parentheses

length: $2n$

space: $2n$ bits

One can reconstruct the tree from this sequence

((((() ())) () (() (() ()) ())))
Operations

parent – enclosing parenthesis

first child – next parenthesis (if ‘open’)

next sibling – open parenthesis following the matching closing parenthesis (if exists)

subtree size – half the number of parentheses between the pair

with $o(n)$ extra bits, all these can be supported in constant time
Parenthesis representation

- Space: \(2n + o(n)\) bits

- Supports:
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor
 - LCA
 - leftmost/rightmost leaf
 - number of leaves in the subtree
 - next node in the level
 - pre/post order number
 - i-th child

 in constant time.

[Munro-Raman ‘97] [Munro et al. 01] [Sadakane ‘03] [Lu-Yeh ‘08]
[Implementation: Geary et al., CPM-04]
A different approach

- If we group \(k \) nodes into a block, then pointers with the block can be stored using only \(\lg k \) bits.

- For example, if we can partition the tree into \(n/k \) blocks, each of size \(k \), then we can store it using \((n/k) \lg n + (n/k) k \lg k = (n/k) \lg n + n \lg k \) bits.

A careful two-level `tree covering` method achieves a space bound of \(2n+o(n) \) bits.
Tree covering method

- Space: $2n + o(n)$ bits

- Supports:
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor
 - LCA
 - leftmost/rightmost leaf
 - number of leaves in the subtree
 - next node in the level
 - pre/post order number
 - i-th child

in constant time.

[Geary et al. ‘04] [He et al. ‘07] [Farzan-Munro ‘08]
Ordered tree representations

<table>
<thead>
<tr>
<th></th>
<th>LOUDS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>parent, first child, sibling</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-th child, child rank</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtree size</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>next node in the level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>level ancestor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>level-order rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-order rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>post-order rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFUDS-order rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>select leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- X: Represented
- : Not represented
Unified representation

- A single representation that can *emulate* all other representations.

- Result: A $2n+o(n)$ bit representation that can *generate* an arbitrary word ($O(\log n)$ bits) of DFUDS, PAREN or PARTITION in constant time.

- Supports the union of all the operations supported by each of these three representations.

[Farzan et al. ‘09]
Applications

- Representing
 - suffix trees
 - XML documents (supporting XPath queries)
 - file systems (searching and Path queries)
 - representing BDDs
 - ...

Open problems

- Making the structures dynamic (there are some existing results)
- Labeled trees (two different approaches supporting different sets of operations)
- Other memory models
 - External memory model (a few recent results)
 - Flash memory model
 - (So far mostly RAM model)
I/O Model [AV88]

Parameters
- **N**: Elements in structure
- **B**: Elements per block
- **M**: Elements in main memory
References

- Jacobson, FOCS 89
- Munro-Raman-Rao, FSTTCS 98 (JAlg 01)
- Benoit et al., WADS 99 (Algorithmica 05)
- Lu et al., SODA 01
- Sadakane, ISSAC 01
- Geary-Raman-Raman, SODA 04
- Munro-Rao, ICALP 04
- Jansson-Sadakane, SODA 06

Implementation:

- Geary et al., CPM 04
- Kim et al., WEA 05
- Gonzalez et al., WEA 05
- Delpratt-Rahman-Raman., WAE 06
Thank You