Succinct data structures

- Goal: represent the data in close to optimal space, while supporting the operations efficiently.
 (optimal -- information-theoretic lower bound)

- Introduced by [Jacobson, FOCS '89]

- An "extension" of data compression.
 (Data compression:
 - Achieve close to optimal space
 - Queries need not be supported efficiently)

Succinct Trees

Jaak Vilo

Thanks to S. Srinivasa Rao

2014

Outline

- Succinct data structures
 - Introduction
 - Examples
- Tree representations
 - Motivation
 - Heap-like representation
 - Jacobson’’s representation
 - Parenthesis representation
 - Partitioning method
 - Comparison and Applications
- Rank and Select on bit vectors

Applications

- Potential applications where
 - memory is limited: small memory devices like PDAs, mobile phones etc.
 - massive amounts of data: DNA sequences, geographical/astronomical data, search engines etc.

Succinct Representations of Trees

S. Srinivasa Rao

Seoul National University

succinct

Suppose that Z is the information-theoretical optimal number of bits needed to store some data. A representation of this data is called

- implicit if it takes $Z + O(1)$ bits of space,
- succinct if it takes $Z + o(Z)$ bits of space, and
- compact if it takes $O(Z)$ bits of space.

Examples

- Trees, Graphs
- Bit vectors, Sets
- Dynamic arrays
- Text indexes
 - suffix trees/suffix arrays etc.
- Permutations, Functions
- XML documents, File systems (labeled, multi-labeled trees)
- DAGs and BDDs
- ...

Example: Text Indexing

- A text string T of length n over an alphabet Σ can be represented using $O(n \log |\Sigma|)$ bits, (or the even the k-th order entropy of T)

 - count the # occurrences of P in T,
 - report all the occurrences of P in T,
 - output a substring of T of given length in almost optimal time.

Example: Compressed Suffix Trees

- Given a text string T of length n over an alphabet Σ, one store it using $O(n \log |\Sigma|)$ bits, to support all the operations supported by a standard suffix tree such as pattern matching queries, suffix links, string depths, lowest common ancestors etc. with slight slowdown.

 - Note that standard suffix trees use $O(n \log n)$ bits.

Example: Permutations

- A permutation π of $1, \ldots, n$
 - A simple representation: $\pi: \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - $\pi(1)=6$ $\pi^{-1}(1)=5$

 - Succinct representation: $\pi(1)=3$ $\pi^{-1}(1)=5$

 - $(1+\varepsilon) n \lg n$ bits
 - $\pi(i)$ in $O(1)$ time
 - $\pi^{-1}(i)$ in $O(n)$ time

 - $\pi(i)$ in $O(1/\varepsilon)$ time ('optimal' trade-off)
 - $\pi(i)$ in $O(1/k)$ time for any positive or negative integer k
 - $\lg (n^k) + o(n) (\prec n \lg n)$ bits (optimal space)
 - $\pi(i)$ in $O(\lg n / \lg \lg n)$ time

Memory model

- Word RAM model with word size $\Theta(\log n)$ supporting
 - read/write
 - addition, subtraction, multiplication, division
 - left/right shifts
 - AND, OR, XOR, NOT

 operations on words in constant time.

(n is the "problem size")

Succinct Tree Representations
Motivation

Trees are used to represent:
- Directories (Unix, all the rest)
- Search trees (B-trees, binary search trees, digital trees or tries)
- Graph structures (we do a tree based search)
- Search indexes for text (including DNA)
 - Suffix trees
- XML documents
- …

Drawbacks of standard representations

- Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.
- In various applications, one would like to support operations like "subtree size" of a node, "least common ancestor" of two nodes, "height", "depth" of a node, "ancestor" of a node at a given level etc.

Drawbacks of standard representations

- The space used by the tree structure could be the dominating factor in some applications.
 - Eg. More than half of the space used by a standard suffix tree representation is used to store the tree structure.

- "A pointer-based implementation of a suffix tree requires more than \(20n\) bytes. A more sophisticated solution uses at least \(12n\) bytes in the worst case, and about \(8n\) bytes in the average. For example, a suffix tree built upon \(700\text{Mb}\) of DNA sequences may take \(40\text{Gb}\) of space."
 -- Handbook of Computational Molecular Biology, 2006

Standard representation

Binary tree:
- each node has two pointers to its left and right children
- An \(n\)-node tree takes \(2n\) pointers or \(2n\ lg n\) bits (can be easily reduced to \(n\ lg n + O(n)\) bits).
- Supports finding left child or right child of a node (in constant time).
- For each extra operation (eg. parent, subtree size) we have to pay, roughly, \(an\ lg n\) bits.

Can we improve the space bound?

- There are less than \(2^n\) distinct binary trees on \(n\) nodes.
 - "The Art of Computer Programming", Volume 4, Fascicle 4: Generating all trees
- \(2n\) bits are enough to distinguish between any two different binary trees.
- Can we represent an \(n\) node binary tree using \(2n\) bits?

How Many Binary Trees Are There?

There are five distinct shapes of binary trees with three nodes:

But how many are there for \(n\) nodes?

Let \(C_n\) be the number of distinct binary trees with \(n\) nodes. This is equal to the number of trees that have a root, a left subtree with \((n-1)\) nodes, and a right subtree of \((n-2)\) nodes, for each \(n\). That is,

\[
C_n = C_0 C_1 C_{n-2} + C_1 C_2 C_{n-3} + \ldots + C_{n-2} C_{n-1} C_0
\]

which is

\[
C_0 = 1 \quad \text{and} \quad C_n = \sum_{i=0}^{\lfloor n/2 \rfloor} C_{i} C_{n-2i} \quad \text{for } n \geq 1.
\]

http://cs.lmu.edu/~ray/notes/binarytrees/
Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1 and external nodes with a 0

Write the labels in level order

One can reconstruct the tree from this sequence

An n node binary tree can be represented in 2n+1 bits.

What about the operations?

Heap-like notation for a binary tree

left child(x) = \[2x\]

right child(x) = \[2x+1\]

parent(x) = \[\lfloor x/2 \rfloor\]

X → X: # 1's up to X

X → X: position of X-th 1

Example 2 (JV)

Node=

BitVector= 10101011110000

Bvrank= 12345678910111213

Rchild(5) = Rank \(\lfloor 2^4 + 1 \rfloor \) = 5

Node=

BitVector= 10101011110000

Bvrank= 12345678910111213

Parent(8) = 5

\(5 \Rightarrow 8 \Rightarrow 4^{th} \) node

4^{th} node is at index 7
Rank/Select on a bit vector

Given a bit vector B

$\text{rank}_1(i) = \# 1's$ up to position i in B

$\text{select}_1(i) = \text{position of the } i\text{-th } 1\text{ in } B$

(similarly rank_0 and select_0)

$B: 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1$

$\text{rank}_1(5) = 3$

$\text{select}_1(4) = 9$

$\text{rank}_0(5) = 2$

$\text{select}_0(4) = 7$

An important substructure in most succinct data structures.
Implementations: [Kim et al.], [Gonzalez et al.], ...

Binary tree representation

- A binary tree on n nodes can be represented using $2n + o(n)$ bits to support:
 - parent
 - left child
 - right child

 in constant time.

[Jacobson ‘89]

Supporting Rank

- Store the rank up to the beginning of each block: $(m/b) \log m$ bits
- Store the ‘rank within the block’ up to the beginning of each sub-block: $(m/b)(b/s) \log b$ bits
- Store a pre-computed table to find the rank within each sub-block: $2^s \log s$ bits

Rank/Select on bit vector

- Choosing $b = (\log m)^2$, and $s = (1/2)\log n$ makes the overall space to be $O(m \log \log m / \log m) (= o(m))$ bits.
- Supports rank in constant time.
- Select can also be supported in constant time using an auxiliary structure of size $O(m \log \log m / \log m)$ bits.

[Clark-Munro ‘96] [Raman et al. ‘01]

Lower bounds for rank and select

- If the bit vector is read-only, any index (auxiliary structure) that supports rank or select in constant time (in fact in $O(\log m)$ bit probes) has size $\Omega(m \log \log m / \log m)$

[Miller ‘05] [Golynski ‘06]

Space measures

- Bit-vector (BV):
 - space used be $m + o(m)$ bits.

- Bit-vector index:
 - bit-sequence stored in read-only memory
 - index of $o(m)$ bits to assist operations

- Compressed bit-vector: with n 1’s
 - space used should be $B(m,n) + o(m)$ bits.

$$B(m,n) = \left\lceil \log \binom{m}{n} \right\rceil$$
Results on Bitvectors

- Elias (JACM 74)
- Jacobson (FOCS 89)
- Clark+Munro (SODA 96)
- Pagh (SICOMP 01)
- Raman et al (SODA 02)
- Miltersen (SODA 04)
- Golynski (ICALP 06)
- Gupta et al.

Implementations:
- Geary et al. (TCS 06)
- Kim et al. (WEA 05)
- Delpratt et al. (WEA 06, SOFSEM 07)
- Okanohara+Sadakane (ALENEX 07)

(Ordered in Encyclopedia of Algorithms)

Ordered trees

- A rooted ordered tree (on n nodes):

 Navigational operations:
 - parent(x) = a
 - first child(x) = b
 - next sibling(x) = c

 Other useful operations:
 - degree(x) = 2
 - subtree size(x) = 4

Implementations:
- Geary et al. (TCS 06)
- Kim et al. (WEA 05)
- Delpratt et al. (WEA 06, SOFSEM 07)
- Okanohara+Sadakane (ALENEX 07)

(Ordered in Encyclopedia of Algorithms)

Level-order degree sequence

Write the degree sequence in level order:

3 2 0 3 0 1 0 2 0 0 0 0

But, this still requires $n \log n$ bits

Solution: write them in unary

1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

Takes $2n-1$ bits

A tree is uniquely determined by its degree sequence

Supporting operations

Add a dummy root so that each node has a corresponding 1

1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1

 node k corresponds to the k-th 1 in the bit sequence

parent(k) = # 0's up to the k-th 1

children of k are stored after the k-th 0

supports: parent, i-th child, degree

(using rank and select)

Level-order unary degree sequence

- Space: $2n+o(n)$ bits

- Supports
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree

- in constant time.

Does not support subtree size operation.

[Jacobson '89]
[Implementation: Delpratt-Rahman-Raman '06]
Another approach

Write the degree sequence in depth-first order:

```
3 2 0 1 0 0 3 0 2 0 0 0
```

In unary:

```
1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0
```

Takes $2n-1$ bits.

The representation of a subtree is together:

Supports subtree size along with other operations.
(Apart from rank/select, we need some additional operations.)

Depth-first unary degree sequence (DFUDS)

- **Space:** $2n + o(n)$ bits
- **Supports:**
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - subtree size
 - depth
 - next node in the level
 - pre/post order number
 - i-th child

in constant time.

[Benoit et al. ’05] [Jansson et al. ’07]

Other useful operations

XML based applications:

```
level ancestor(x,l): returns the ancestor of x at level l
```

eg. level ancestor(11,2) = 4

Suffix tree based applications:

```
LCA(x,y): returns the least common ancestor of x and y
```

eg. LCA(7,12) = 4

Operations

```
parent = enclosing parenthesis
first child = next parenthesis (if ‘open’)
next sibling = open parenthesis following the matching closing parenthesis (if exists)
subtree size = half the number of parentheses between the pair
```

with $o(n)$ extra bits, all these can be supported in constant time.

![Parenthesis representation](image)

Supports:

- parent
- first child
- next sibling
- subtree size
- degree
- depth
- next node in the level
- pre/post order number
- i-th child

in constant time.

[Munro-Raman ’97] [Munro et al. ‘01] [Sadakane ’03] [Lu-Yeh ’08]
[Implementation: Geary et al., CPM-04]
A different approach

- If we group k nodes into a block, then pointers with the block can be stored using only $\lg k$ bits.

- For example, if we can partition the tree into n/k blocks, each of size k, then we can store it using $(n/k) \lg n + (n/k) \lg k = (n/k) \lg n + n \lg k$ bits.

A careful two-level ‘tree covering’ method achieves a space bound of $2n + o(n)$ bits.

Tree covering method

- **Space:** $2n + o(n)$ bits

 Supports:
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor
 - level ancestor
 - leftmost/rightmost leaf
 - number of leaves in the subtree
 - next node in the level
 - pre/post order number
 - i-th child

 in constant time.

 [Geary et al. ’04] [He et al. ’07] [Farzan-Munro ’08]

Ordered tree representations

<table>
<thead>
<tr>
<th>LOUDS</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFUDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PAREN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PARTITION</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Unified representation

- A single representation that can _emulate_ all other representations.

 - **Result:** A $2n + o(n)$ bit representation that can _generate_ an arbitrary word ($O(\log n)$ bits) of DFUDS, PAREN or PARTITION in constant time

 - Supports the union of all the operations supported by each of these three representations.

 [Farzan et al. ’09]

Applications

- Representing
 - suffix trees
 - XML documents (supporting XPath queries)
 - file systems (searching and Path queries)
 - representing BDDs
 - ...

Open problems

- Making the structures dynamic (there are some existing results)

- Labeled trees (two different approaches supporting different sets of operations)

- Other memory models
 - External memory model (a few recent results)
 - Flash memory model
 - (So far mostly RAM model)
I/O Model [AV88]

- **N**: Elements in structure
- **B**: Elements per block
- **M**: Elements in main memory

References

- Jacobson, FOCS 89
- Munro-Raman-Rao, FSTTCS 98 (JAig 01)
- Benoit et al., WADS 99 (Algorithmica 05)
- Lu et al., SODA 01
- Sadakane, ISSAC 01
- Geary-Raman-Raman, SODA 04
- Munro-Rao, ICALP 04
- Jansson-Sadakane, SODA 06

Implementation:

- Geary et al., CPM 04
- Kim et al., WEA 05
- Gonzalez et al., WEA 05
- Delpratt-Rahman-Raman., WAE 06

Thank You