Outline
- Succinct data structures
 - Introduction
 - Examples
- Tree representations
 - Motivation
 - Heap-like representation
 - Jacobson’s representation
 - Parenthesis representation
 - Partitioning method
 - Comparison and Applications
- Rank and Select on bit vectors

Succinct data structures
- Goal: represent the data in close to optimal space, while supporting the operations efficiently.
 (optimal — information-theoretic lower bound)
- Introduced by [Jacobson, FOCS ’89]
- An “extension” of data compression.
 (Data compression:
 - Achieve close to optimal space
 - Queries need not be supported efficiently)

Applications
- Potential applications where
 - memory is limited: small memory devices like PDAs, mobile phones etc.
 - massive amounts of data: DNA sequences, geographical/astronomical data, search engines etc.

Examples
- Trees, Graphs
- Bit vectors, Sets
- Dynamic arrays
- Text indexes
 - suffix trees/suffix arrays etc.
- Permutations, Functions
- XML documents, File systems (labeled, multi-labeled trees)
- DAGs and BDDs
- ...
Example: Text Indexing
- A text string T of length n over an alphabet Σ can be represented using $n \log |\Sigma| + o(n \log |\Sigma|)$ bits, (or the even the k-th order entropy of T)
- to support the following pattern matching queries (given a pattern P of length m):
 - count the # occurrences of P in T,
 - report all the occurrences of P in T,
 - output a substring of T of given length in almost optimal time.

Example: Compressed Suffix Trees
- Given a text string T of length n over an alphabet Σ, one store it using $O(n \log |\Sigma|)$ bits, to support all the operations supported by a standard suffix tree such as pattern matching queries, suffix links, string depths, lowest common ancestors etc. with slight slowdown.
- Note that standard suffix trees use $O(n \log n)$ bits.

Example: Permutations
- A permutation π of $1,\ldots,n$:
 - A simple representation: π: 1 2 3 4 5 6 7 8
 - $n \lg n$ bits
 - $\pi(i)$ in $O(1)$ time
 - $\pi^{-1}(i)$ in $O(n)$ time
 - Succinct representation: $n^2(1)=3 \quad \pi^{-1}(1)=5$
 - $(1+\epsilon) n \lg n$ bits
 - $\pi(i)$ in $O(1)$ time
 - $\pi^{-1}(i)$ in $O(1/\epsilon)$ time ("optimal" trade-off)
 - $\pi^{-1}(i)$ in $O(1/k)$ time (for any positive or negative integer k)
 - $\lg (n!) + o(n) (\sim n \lg n)$ bits (optimal space)
 - $\pi(i)$ in $O(\lg n / \lg \lg n)$ time

Example: Memory model
- Word RAM model with word size $\Theta(\log n)$ supporting:
 - read/write
 - addition, subtraction, multiplication, division
 - left/right shifts
 - AND, OR, XOR, NOT
 - operations on words in constant time.
 - $(n$ is the "problem size")

Motivation
Trees are used to represent:
- Directories (Unix, all the rest)
- Search trees (B-trees, binary search trees, digital trees or tries)
- Graph structures (we do a tree based search)
- Search indexes for text (including DNA)
 - Suffix trees
 - XML documents
 - ...
Drawbacks of standard representations

- Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.

- In various applications, one would like to support operations like "subtree size" of a node, "least common ancestor" of two nodes, "height", "depth" of a node, "ancestor" of a node at a given level etc.

The space used by the tree structure could be the dominating factor in some applications.

- Example: More than half of the space used by a standard suffix tree representation is used to store the tree structure.

- "A pointer-based implementation of a suffix tree requires more than $2n$ bytes. A more sophisticated solution uses at least $12n$ bytes in the worst case, and about $8n$ bytes in the average. For example, a suffix tree built upon 700Mb of DNA sequences may take 40Gb of space.

-- Handbook of Computational Molecular Biology, 2006

Standard representation

Binary tree: each node has two pointers to its left and right children

An n-node tree takes $2n$ pointers or $2n \log n$ bits (can be easily reduced to $n \log n + O(n)$ bits).

Supports finding left child or right child of a node (in constant time).

For each extra operation (eg. parent, subtree size) we have to pay, roughly, an additional $n \log n$ bits.

Can we improve the space bound?

- There are less than 2^n distinct binary trees on n nodes.

- $2n$ bits are enough to distinguish between any two different binary trees.

- Can we represent an n node binary tree using $2n$ bits?

Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1 and external nodes with a 0

Write the labels in level order

An n node binary tree can be represented in $2n+1$ bits.

What about the operations?

$\text{left child}(x) = [2x]$
$\text{right child}(x) = [2x+1]$
$\text{parent}(x) = [x/2]$
Example 2 (JV)

Node=
1 2 3 4 5 6

BitVector=
1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0

Bvrank=
1 2 3 4 5 6 7 8 9
10 11 12 13

Parent() = 5
5
4
th
node
is at index 7
=>
8 =>
4
th
node

Rank and Select on a bit vector

Given a bit vector \(B \)

\[\text{rank}_i = \# 1's \text{ up to position } i \text{ in } B \]

\[\text{select}_i = \text{position of the } i\text{-th }1 \text{ in } B \]

(similarly \(\text{rank}_0 \) and \(\text{select}_0 \))

\[B = 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 \]

\[\text{rank}_5 = 3 \]
\[\text{select}_4 = 9 \]
\[\text{rank}_6 = 2 \]
\[\text{select}_4 = 7 \]

An important substructure in most succinct data structures.
Implementations: [Kim et al.], [Gonzalez et al.], ...

Binary tree representation

- A binary tree on \(n \) nodes can be represented using \(2n+o(n) \) bits to support:
 - parent
 - left child
 - right child

 in constant time.

[Jacobson '89]
13.3.2013

Rank/Select on a bit vector

Given a bit vector \(B \)

\[\text{rank}_1(i) = \# \text{1's up to position } i \text{ in } B \]

\[\text{select}_1(i) = \text{position of the } i \text{-th 1 in } B \]

(similarly \(\text{rank}_0 \) and \(\text{select}_0 \))

\[
\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
B: & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[\text{rank}_1(5) = 3 \]
\[\text{select}_1(4) = 9 \]

\[\text{rank}_0(5) = 2 \]
\[\text{select}_0(4) = 7 \]

Supporting Rank

- Store the rank up to the beginning of each block: \((m/b) \log m \) bits
- Store the 'rank within the block' up to the beginning of each sub-block: \((m/b)(b/s) \log b \) bits
- Store a pre-computed table to find the rank within each sub-block: \(2^s \log s \) bits

Lower bounds for rank and select

- If the bit vector is read-only, any index (auxiliary structure) that supports rank or select in constant time (in fact in \(O(\log m) \) bit probes) has size \(\Omega(m \log \log m / \log m) \)

[Clark-Munro '96] [Raman et al. '01]

Space measures

- \text{Bit-vector (BV)}:
 \- space used be \(m + o(m) \) bits.

- \text{Bit-vector index}:
 \- bit-sequence stored in read-only memory
 \- index of \(o(m) \) bits to assist operations

- \text{Compressed bit-vector}: with \(n \) 1’s
 \- space used should be \(B(m,n) + o(m) \) bits.

\[B(m,n) = \left\lceil \log \left(\frac{m}{n} \right) \right\rceil \]

Results on Bitvectors

- Elias (JACM 74)
- Jacobson (FOCS 89)
- Clark+Munro (SODA 96)
- Pagh (SICOMP 01)
- Raman et al (SODA 02)
- Miltersen (SODA 04)
- Golynski (ICALP 06)
- Gupta et al.

Implementations:
- Geary et al. (TCS 06)
- Kim et al. (WEA 05)
- Delpratt et al. (WEA 06, SOFSEM 07)
- Okanohara+Sadakane (ALENEX 07)

(Entry in Encyclopaedia of Algorithms)
13.3.2013

Ordered trees

A rooted ordered tree (on \(n \) nodes):

Navigational operations:
- parent(\(x \)) = \(a \)
- first child(\(x \)) = \(b \)
- next sibling(\(x \)) = \(c \)

Other useful operations:
- degree(\(x \)) = 2
- subtree size(\(x \)) = 4

Level-order degree sequence

Write the degree sequence in level order:

\[
3 \ 2 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 0 \ 0 \ 0
\]

But, this still requires \(n \lg n \) bits

Solution: write them in unary

\[
1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0
\]

Takes \(2n-1 \) bits

A tree is uniquely determined by its degree sequence.

Level-order unary degree sequence

- **Space:** \(2n+o(n) \) bits
- **Supports**
 - parent
 - \(i \)-th child (and hence first child)
 - next sibling
 - degree

in constant time.

Does not support **subtree size** operation.

[Jacobson '89]
[Implementation: Delpratt-Rahman-Raman '06]

Another approach

Write the degree sequence in depth-first order:

\[
3 \ 2 \ 0 \ 1 \ 0 \ 0 \ 3 \ 0 \ 2 \ 0 \ 0 \ 0
\]

In unary:

\[
1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\]

Takes \(2n-1 \) bits.

The representation of a subtree is together.

Supports subtree size along with other operations.

(Apart from rank/select, we need some additional operations.)

Supporting operations

Add a dummy root so that each node has a corresponding 1

\[
1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\]

node \(k \) corresponds to the \(k \)-th 1 in the bit sequence

parent(\(x \)) = \# 0's up to the \(k \)-th 1

children of \(k \) are stored after the \(k \)-th 0

supports: parent, \(i \)-th child, degree

(using rank and select)
Depth-first unary degree sequence (DFUDS)

- **Space**: $2n + o(n)$ bits
- **Supports**:
 - parent
 - i-th child (and hence first child)
 - next sibling
 - degree
 - subtree size
 - depth
 - height
 in constant time.

[Benoi et al. ’05] [Jansson et al. ’07]

Other useful operations

XML based applications:
- level ancestor(x, l): returns the ancestor of x at level l
 - eg. level ancestor(11, 2) = 4

Suffix tree based applications:
- LCA(x, y): returns the least common ancestor of x and y
 - eg. LCA(7, 12) = 4

Operations

- **parent**: enclosing parenthesis
- **first child**: next parenthesis (if 'open')
- **next sibling**: open parenthesis following the matching closing parenthesis (if exists)
- **subtree size**: half the number of parentheses between the pair

Parenthesis representation

- **Space**: $2n + o(n)$ bits
- **Supports**:
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 in constant time.

One can reconstruct the tree from this sequence

```
( ( ( ( ) ) ) ( ( ) ) ( ) ( ) )
```

A different approach

- If we group k nodes into a block, then pointers with the block can be stored using only $\lg k$ bits.
- For example, if we can partition the tree into nk blocks, each of size k, then we can store it using $(nk) \lg k = (nk) \lg n + n \lg k$ bits.
Tree covering method

- **Space:** $2n + o(n)$ bits
- **Supports:**
 - parent
 - first child
 - next sibling
 - subtree size
 - degree
 - depth
 - height
 - level ancestor

in constant time.

[Geary et al. '04] [He et al. '07] [Farzan-Munro '08]

Ordered tree representations

- LOUDS: $X \ X \ X \ X \ X \ X \ X$
- DFUDS: $X \ X \ X\ X$
- PAREN: $X \ X$
- PARTITION: X

Unified representation

- A single representation that can *emulate* all other representations.

- Result: A $2n + o(n)$ bit representation that can *generate* an arbitrary word ($O(\log n)$ bits) of DFUDS, PAREN or PARTITION in constant time.

- Supports the union of all the operations supported by each of these three representations.
 [Farzan et al. '09]

Applications

- Representing
 - suffix trees
 - XML documents (supporting XPath queries)
 - file systems (searching and Path queries)
 - representing BDDs
 - ...

Open problems

- Making the structures dynamic (there are some existing results)
- Labeled trees (two different approaches supporting different sets of operations)
- Other memory models
 - External memory model (a few recent results)
 - Flash memory model
 - (So far mostly RAM model)

I/O Model [AV88]

- Parameters
 - N: Elements in structure
 - B: Elements per block
 - M: Elements in main memory
References

- Jacobson, FOCS 89
- Munro-Raman-Rao, FSTTCS 98 (JAlg 01)
- Benoit et al., WADS 99 (Algorithmica 05)
- Lu et al., SODA 01
- Sadakane, ISSAC 01
- Geary-Raman-Raman, SODA 04
- Munro-Rao, ICALP 04
- Jansson-Sadakane, SODA 06

Implementation:
- Geary et al., CPM 04
- Kim et al., WEA 05
- Gonzalez et al., WEA 05
- Delpratt-Rahman-Raman, WAE 06

Thank You