Introduction to Conformance Checking

Fabrizio Maria Maggi
f.m.maggi@ut.ee
Process Analysis in the BPM Lifecycle
Process Mining

Real World
- Supports
- Controls

Information System
- Specifies
- Configures
- Implements
- Analyzes

Records events, like messages and transactions

Model
- Models
- Analyzes

Event Logs
- Discovery
- Conformance
- Extension

www.processmining.org
Process Mining

Real World

Models
Configures
Implements
Analyzes

Supports
Controls

Information System

Specifies
Records

Event Logs

Discovery
Conformance
Extension

www.processmining.org
Replay: the Origin of Conformance Checking

Replay: the Origin of Conformance Checking
Replay: the Origin of Conformance Checking

B C E
Replay: the Origin of Conformance Checking

B C E
Replay: the Origin of Conformance Checking

C E
Replay: the Origin of Conformance Checking

C E
Replay: the Origin of Conformance Checking

A C E
Replay: the Origin of Conformance Checking
Dealing with Noise and Incompleteness

The **ideal process model** allows for the behavior coinciding with the frequent behavior seen when the process would be infinitely observed.

Mature process mining algorithms allow to **abstract** from infrequent behavior.
Four competing quality criteria

In general, the **quality** of a process mining result refers to **four quality dimensions**:

1. **Fitness**: the discovered model should allow for the behavior seen in the event log.
 - A model has a **perfect fitness** if all traces in the log can be replayed from the beginning to the end.
Four competing quality criteria

In general, the quality of a process mining result refers to four quality dimensions:

1. **Fitness**
2. **Precision** (avoid underfitting): the discovered model should not allow for behavior completely unrelated to what was seen in the event log.
Four competing quality criteria

In general, the quality of a process mining result refers to four quality dimensions:

1. **Fitness**
2. **Precision** (avoid underfitting)
3. **Generalization** (avoid overfitting): the discovered model should generalize the example behavior seen in the event log.
Four competing quality criteria

In general, the quality of a process mining result refers to four quality dimensions:

1. **Fitness**: the discovered model should allow for the behavior seen in the event log.
 - A model has a *perfect fitness* if all traces in the log can be replayed from the beginning to the end.

2. **Precision** (avoid underfitting): the discovered model should not allow for behavior completely unrelated to what was seen in the event log.

3. **Generalization** (avoid overfitting): the discovered model should generalize the example behavior seen in the event log.

4. **Simplicity**: the discovered model should be as simple as possible.
 - Occam’s Razor: The simplest model that can explain the behavior seen in the log is the best model.
Flower model (underfitting)

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360} \} \]
Enumerating model (overfitting)

\[L = \{ <a, b, i, j, k, l>^10, <a, b, g, j, k, i, l>^{140}, <a, f, g, j, i, k>^5, <a, f, g, i, j, k, l>^{360}\} \]
Something in the middle...

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]
Computing fitness: basic approach

$L = \{ <a, b, i, j, k, l>^{10}, <a, b, g, j, k, i, l>^{140}, <a, f, g, j, i, k>^{5}, <a, f, g, i, j, k, l>^{360}\}$
Computing fitness: basic approach

\[L = \{<a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]
Computing fitness: basic approach

A B I J K L
Computing fitness: basic approach
Computing fitness: basic approach

B I J K L
Computing fitness: basic approach

B I J K L
Computing fitness: basic approach
Computing fitness: basic approach
Computing fitness: basic approach

I J K L

non-conformance
Computing fitness: basic approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

A “basic approach” to compute fitness is to **count the fraction of cases** that can be “parsed completely” (i.e., the proportion of cases corresponding to firing sequences leading from [start] to [end]).
Computing fitness: basic approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]

A “basic approach” to compute fitness is to count the fraction of cases that can be “parsed completely” (i.e., the proportion of cases corresponding to firing sequences leading from [start] to [end]).

Fitness = 0.97
Computing fitness: Event-based approach

- In the simple fitness computation, **we stopped replaying a trace** once we encounter a problem and mark it as **non-fitting**.
- An event-based approach to calculate fitness consists of just continue replaying the trace on the model and:
 - record all situations where a transition is forced to fire without being enabled, i.e., **we count all missing tokens**.
 - record the **tokens that remain at the end**.
- **Use of four counters:**
 - $p =$ produced tokens
 - $c =$ consumed tokens
 - $m =$ missing tokens
 - $r =$ remaining tokens
Computing fitness: Event-based approach

L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \}
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]
Computing fitness: Event-based approach

A B I J K L
Computing fitness: Event-based approach

\[p = 1 \]
\[c = 0 \]
\[m = 0 \]
\[r = 0 \]
Computing fitness: Event-based approach

\[p = 1 \]
\[c = 1 \]
\[m = 0 \]
\[r = 0 \]
Computing fitness: Event-based approach

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 0 \quad m = 0 \quad r = 1 \]

\[p = 0 \quad c = 1 \quad m = 0 \quad r = 1 \]

\[p = 1 \quad c = 0 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 0 \quad m = 0 \quad r = 0 \]
Computing fitness: Event-based approach
Computing fitness: Event-based approach
Computing fitness: Event-based approach
Computing fitness: Event-based approach

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 1 \quad c = 1 \quad m = 0 \quad r = 0 \]

\[p = 12 \quad c = 12 \quad m = 1 \quad r = 1 \]
Computing fitness: Event-based approach

L = {<a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}}

\[
\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)
\]
Computing fitness: Event-based approach

$L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \}$

$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

\[p = 12 \]
\[c = 12 \]
\[m = 1 \]
\[r = 1 \]

Fitness \((\sigma, N) \) = \(\frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) \)

Fitness = 0.9166
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]

\[
\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c}\right) + \frac{1}{2} \left(1 - \frac{r}{p}\right)
\]
Computing fitness: Event-based approach

$L = \{ <a, b, i, j, k, l>^{10}, <a, b, g, j, k, i, l>^{140}, <a, f, g, j, i, k>^5, <a, f, g, i, j, k, l>^{360}\}$

$p = 13$
$c = 13$
$m = 0$
$r = 0$

$$fitness(\sigma, N) = \frac{1}{2}\left(1 - \frac{m}{c}\right) + \frac{1}{2}\left(1 - \frac{r}{p}\right)$$
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]

\[p = 13 \]
\[c = 13 \]
\[m = 0 \]
\[r = 0 \]

\[
\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)
\]

Fitness = 1
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360}\} \]

\[
\text{fitness}(\sigma, N) = \frac{1}{2}\left(1 - \frac{m}{c}\right) + \frac{1}{2}\left(1 - \frac{r}{p}\right)
\]
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360} \} \]
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

- \(p = 1 \)
- \(c = 1 \)
- \(m = 0 \)
- \(r = 0 \)

- \(p = 1 \)
- \(c = 1 \)
- \(m = 0 \)
- \(r = 0 \)

- \(p = 1 \)
- \(c = 1 \)
- \(m = 0 \)
- \(r = 0 \)

- \(p = 1 \)
- \(c = 1 \)
- \(m = 0 \)
- \(r = 0 \)

- \(p = 1 \)
- \(c = 1 \)
- \(m = 0 \)
- \(r = 1 \)

\(p = 12 \)
\(c = 12 \)
\(m = 1 \)
\(r = 1 \)
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360}\} \]

\[p = 12 \]
\[c = 12 \]
\[m = 1 \]
\[r = 1 \]

Fitness = 0.9166
Computing fitness: Event-based approach

$L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\}$

\[
\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)
\]
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

\[
\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c}\right) + \frac{1}{2} \left(1 - \frac{r}{p}\right)
\]

\(p = 13 \)
\(c = 13 \)
\(m = 0 \)
\(r = 0 \)
Computing fitness: Event-based approach

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360} \} \]

\[p = 13 \]
\[c = 13 \]
\[m = 0 \]
\[r = 0 \]

\[\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) \]

Fitness = 1
Computing fitness at log level

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \\
\frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)
\]
Computing fitness at log level

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360} \} \]

Number of occurrences of a specific trace in the log (e.g., if a trace \(\sigma \) appears 200 times in the log, \(L(\sigma) \) will be equal to 200)

\[
\text{fitness}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \\
\frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]
Computing fitness at log level

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]

\[p = 12 \quad p = 13 \quad p = 12 \quad p = 13 \]
\[c = 12 \quad c = 13 \quad c = 12 \quad c = 13 \]
\[m = 1 \quad m = 0 \quad m = 1 \quad m = 0 \]
\[r = 1 \quad r = 0 \quad r = 1 \quad r = 0 \]

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]
Computing fitness at log level

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^5, <a,f,g,i,j,k,l>^{360} \} \]

\[
\begin{align*}
\text{p} &= 12 & \text{c} &= 12 & m &= 1 & r &= 1 \\
\text{p} &= 13 & \text{c} &= 13 & m &= 0 & r &= 0 \\
\text{p} &= 12 & \text{c} &= 12 & m &= 1 & r &= 1 \\
\text{p} &= 13 & \text{c} &= 13 & m &= 0 & r &= 0
\end{align*}
\]

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]

Fitness = 0.997
Computing Precision

Computing Precision

\[L = \{ <a,b,i,j,k,l>^{10}, <a,b,g,j,k,i,l>^{140}, <a,f,g,j,i,k>^{5}, <a,f,g,i,j,k,l>^{360}\} \]
Computing Precision

\[L = \{ <a, b, i, j, k, l>^{10}, <a, b, g, j, k, i, l>^{140}, <a, f, g, j, i, k>^5, <a, f, g, i, j, k, l>^{360} \} \]

distinct traces in the log conformant with the model (2) / # possible traces conformant with the model (6) = 0.33
A common approach to compute generalization in to check the quality of a discovered model
A common approach to compute generalization in order to check the quality of a discovered model.
A common approach to compute generalization in order to check the quality of a discovered model.

\[
\begin{array}{c}
\text{Discovery}
\end{array}
\]
A common approach to compute generalization in to check the quality of a discovered model
A common approach to compute generalization is to check the quality of a discovered model.
A common approach to compute generalization in to check the quality of a discovered model
A common approach to compute generalization in to check the quality of a discovered model
A common approach to compute generalization is to check the quality of a discovered model.
A common approach to compute generalization is to check the quality of a discovered model.