Process Analysis

Process identification

Process architecture

Process discovery

Conformance and performance insights

As-is process model

Process monitoring and controlling

Executable process model

Insights on weaknesses and their impact

Process analysis

Process implementation

To-be process model

Process redesign
Process Analysis Techniques

Qualitative analysis

- Value-Added & Waste Analysis
- Root-Cause Analysis
- Pareto Analysis
- Issue Register

Quantitative Analysis

- Flow analysis
- Queuing analysis
- Simulation
1. Introduction
2. Process Identification
3. Essential Process Modeling
4. Advanced Process Modeling
5. Process Discovery
6. Qualitative Process Analysis
7. Quantitative Process Analysis
8. Process Redesign
9. Process Automation
10. Process Intelligence
Why flow analysis is not enough?

Flow analysis does not consider waiting times due to resource contention.

Queuing analysis and simulation address these limitations and have a broader applicability.
Queuing Analysis

• Capacity problems are common and a key driver of process redesign
 • Need to balance the cost of increased capacity against the gains of increased productivity and service
• Queuing and waiting time analysis is particularly important in service systems
 • Large costs of waiting and/or lost sales due to waiting

Prototype Example – ER at a Hospital
• Patients arrive by ambulance or by their own accord
• One doctor is always on duty
• More patients seeks help ⇒ longer waiting times

➤ Question: Should another MD position be instated?
Delay is Caused by Job Interference

If arrivals are regular or sufficiently spaced apart, no queuing delay occurs.

Arrival Times

Departure Times

Deterministic traffic

Variable but spaced apart traffic

© Dimitri P. Bertsekas
Burstiness Causes Interference

* Queuing results from variability in processing times and/or interarrival intervals
Job Size Variation Causes Interference

- Deterministic arrivals, variable job sizes

© Dimitri P. Bertsekas
High Utilization Exacerbates Interference

- The queuing probability increases as the load increases.
- Utilization close to 100% is unsustainable → too long queuing times.

© Dimitri P. Bertsekas
The Poisson Process

• Common arrival assumption in many queuing and simulation models
• The times between arrivals are independent, identically distributed and **exponential**
 • $P(\text{arrival} < t) = 1 - e^{-\lambda t}$
• Key property: The fact that a certain event has not happened tells us nothing about how long it will take before it happens
 • e.g., $P(X > 40 | X \geq 30) = P(X > 10)$
Negative Exponential Distribution
Queuing theory: basic concepts

Basic characteristics:
• λ (mean arrival rate) = average number of arrivals per time unit
• μ (mean service rate) = average number of jobs that can be handled by one server per time unit:
• c = number of servers
Given \(\lambda \), \(\mu \) and \(c \), we can calculate:

- \(\rho \) = resource utilization
- \(W_q \) = average time a job spends in queue (i.e. waiting time)
- \(W \) = average time in the “system” (i.e. cycle time)
- \(L_q \) = average number of jobs in queue (i.e. length of queue)
- \(L \) = average number of jobs in system (i.e. Work-in-Progress)
M/M/1 queue

Assumptions:
• time between arrivals and processing time follow a negative exponential distribution
• 1 server \((c = 1) \)
• FIFO

\[
\rho = \frac{\text{Capacity Demand}}{\text{Available Capacity}} = \frac{\lambda}{\mu}
\]

\[
L = \frac{\rho}{1 - \rho}
\]
\[
W = \frac{L}{\lambda} = \frac{1}{(\mu - \lambda)}
\]

\[
L_q = \frac{\rho^2}{1 - \rho} = L - \rho
\]
\[
W_q = \frac{L_q}{\lambda} = \frac{\lambda}{(\mu (\mu - \lambda))}
\]
M/M/c queue

• Now there are \(c \) servers in parallel, so the expected capacity per time unit is then \(c^* \mu \)

\[
\rho = \frac{\text{Capacity Demand}}{\text{Available Capacity}} = \frac{\lambda}{c^* \mu}
\]

\[\text{Little’s Formula} \Rightarrow W_q = \frac{L_q}{\lambda}\]

\[W = W_q + \left(\frac{1}{\mu} \right)\]

\[\text{Little’s Formula} \Rightarrow L = \lambda W\]
Tool Support

For M/M/c systems, the exact computation of L_q is rather complex...

\[L_q = \sum_{n=c}^{\infty} (n-c)P_n = \ldots = \frac{(\lambda/\mu)^c \rho}{c!(1-\rho)^2} P_0 \]

\[P_0 = \left(\sum_{n=0}^{c-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^c}{c!} \frac{1}{1-(\lambda/(c\mu))} \right)^{-1} \]

Consider using a tool, e.g.
- http://www.supositorio.com/rcalc/rcalclite.htm (very simple)
- http://queueingtoolpak.org/ (more sophisticated, Excel add-on)
Example – ER at County Hospital

➢ Situation
 • Patients arrive according to a Poisson process with intensity λ (\Leftrightarrow the time between arrivals is $\exp(\lambda)$ distributed.
 • The service time (the doctor’s examination and treatment time of a patient) follows an exponential distribution with mean $1/\mu$ (=exp(μ) distributed)
 \Rightarrow The ER can be modeled as an M/M/c system where $c =$ the number of doctors

➢ Data gathering
 \Rightarrow $\lambda = 2$ patients per hour
 \Rightarrow $\mu = 3$ patients per hour

❖ Question
 – Should the capacity be increased from 1 to 2 doctors?
Interpretation
- To be in the queue = to be in the waiting room
- To be in the system = to be in the ER (waiting or under treatment)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>One doctor (c=1)</th>
<th>Two Doctors (c=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(L_q)</td>
<td>4/3 patients</td>
<td>1/12 patients</td>
</tr>
<tr>
<td>(L)</td>
<td>2 patients</td>
<td>3/4 patients</td>
</tr>
<tr>
<td>(W_q)</td>
<td>2/3 h = 40 minutes</td>
<td>1/24 h = 2.5 minutes</td>
</tr>
<tr>
<td>(W)</td>
<td>1 h</td>
<td>3/8 h = 22.5 minutes</td>
</tr>
</tbody>
</table>

Is it warranted to hire a second doctor?
We consider a Level-2 IT service desk with two staff members. Each staff member can handle one service request in 4 working hours on average. Service times are exponentially distributed. Requests arrive at a mean rate of one request every 3 hours according to a Poisson process. What is the average time between the moment a service request arrives at this desk and the moment it is fulfilled?

...Now consider the scenario where the number of requests becomes one per hour. How many level-2 staff are required to be able to start serving a request on average within two working hours of it being received?
Process Simulation

- Versatile quantitative analysis method for
 - As-is analysis
 - What-if analysis
- In a nutshell:
 - Run a large number of process instances
 - Gather performance data (cost, time, resource usage)
 - Calculate statistics from the collected data
Process Simulation

- Model the process
- Define a simulation scenario
- Run the simulation
- Analyze the simulation outputs
- Repeat for alternative scenarios
Example
Elements of a simulation scenario

1. Processing times of activities
 • Fixed value
 • Probability distribution
Exponential Distribution
Normal Distribution
Choice of probability distribution

• Fixed
 • Rare, can be used to approximate case where the activity processing time varies very little
 • Example: a task performed by a software application
• Normal
 • Repetitive activities
 • Example: “Check completeness of an application”
• Exponential
 • Complex activities that may involve analysis or decisions
 • Example: “Assess an application”
Simulation Example

Normal(10m, 2m)

Normal(20m, 4m)

Exp(20m)

Normal(10m, 2m)

Normal(10m, 2m)
Elements of a simulation model

1. Processing times of activities
 - Fixed value
 - Probability distribution

2. Conditional branching probabilities

3. Arrival rate of process instances and probability distribution
 - Typically exponential distribution with a given mean inter-arrival time
 - Arrival calendar, e.g. Monday-Friday, 9am-5pm, or 24/7
Branching probability and arrival rate

Arrival rate = 2 applications per hour
Inter-arrival time = 0.5 hour
Negative exponential distribution
From Monday-Friday, 9am-5pm
Elements of a simulation model

1. Processing times of activities
 - Fixed value
 - Probability distribution
2. Conditional branching probabilities
3. Arrival rate of process instances
 - Typically exponential distribution with a given mean inter-arrival time
 - Arrival calendar, e.g. Monday-Friday, 9am-5pm, or 24/7
4. Resource pools
Resource pools

• Name
• Size of the resource pool
• Cost per time unit of a resource in the pool
• Availability of the pool (working calendar)

• Examples
 • Clerk
 • € 25 per hour
 • Monday-Friday, 9am-5pm
 • Credit Officer
 • € 25 per hour
 • Monday-Friday, 9am-5pm

• In some tools, it is possible to define cost and calendar per resource, rather than for entire resource pool
Elements of a simulation model

1. Processing times of activities
 - Fixed value
 - Probability distribution

2. Conditional branching probabilities

3. Arrival rate of process instances and probability distribution
 - Typically exponential distribution with a given mean inter-arrival time
 - Arrival calendar, e.g. Monday-Friday, 9am-5pm, or 24/7

4. Resource pools

5. Assignment of tasks to resource pools
Resource pool assignment

Clerk
- Check credit history
- Check income sources

Officer
- Assess application
 - entry point
 - notified
 - denied

Clerk
- Make credit offer
- Notify rejection
- Receive customer feedback
- Decision review requested

System
- Credit application processed
- exit point
Process Simulation

- Model the process
- Define a simulation scenario
- Run the simulation
- Analyze the simulation outputs
- Repeat for alternative scenarios

✔
✔
✔
Output: Performance measures & histograms
Process Simulation

1. Model the process
2. Define a simulation scenario
3. Run the simulation
4. Analyze the simulation outputs
5. Repeat for alternative scenarios
Tools for Process Simulation

• ARIS
• ITP Commerce Process Modeler for Visio
• Logizian
• Oracle BPA
• Progress Savvion Process Modeler
• ProSim
• Bizagi Process Modeler
 • Check tutorial at http://tinyurl.com/bizagisimulation
• Signavio + BIMP
 • http://bimp.cs.ut.ee/
BIMP – bimp.cs.ut.ee

• Accepts standard BPMN 2.0 as input
• Simple form-based interface to enter simulation scenario
• Produces KPIs + simulation logs in MXML format
 • Simulation logs can be imported into a process mining tool
BIMP Demo
Your turn

- Textbook, Chapter 7, exercise 7.8 (page 240)
Pitfalls of simulation

• Stochasticity
• Data quality
• Simplifying assumptions
Stochasticity

• Problem
 • Simulation results may differ from one run to another

• Solutions
 1. Make the simulation timeframe long enough to cover weekly and seasonal variability, where applicable
 2. Use multiple simulation runs, average results of multiple runs, compute confidence intervals

Multiple simulation runs → Average results of multiple runs → Compute confidence intervals
Data quality

• Problem
 • Simulation results are only as trustworthy as the input data

• Solutions:
 1. Rely as little as possible on “guesstimates”. Use input analysis where possible:
 • Derive simulation scenario parameters from numbers in the scenario
 • Use statistical tools to check fit the probability distributions
 2. Simulate the “as is” scenario and cross-check results against actual observations
Simulation assumptions

• That the process model is always followed to the letter
 • No deviations
 • No workarounds
• That a resource only works on one task
 • No multitasking
• That if a resource becomes available and a work item (task) is enabled, the resource will start it right away
 • No batching
• That resources work constantly (no interruptions)
 • Every day is the same!
 • No tiredness effects
 • No distractions beyond “stochastic” ones
Next week