Predicting Steering Angle
for
Simplified Performance Metrics from Rosbag Data

Arina Izvolskaja
Anton Rudchenko
Katrin Tsepelina
Kertu Toompea
Our Team

1. Arina Izvolskaja
2. Anton Rudchenko
3. Katrin Tsepelina
4. Kertu Toompea (self-proposed project idea)
Our Project

Problem - In autonomous driving it is sometimes difficult to measure if a test drive is good or bad. But we need to measure. To know how to continue work towards self-driving vehicles.

Idea - Rosbag includes all the data from a drive. So it must be possible to measure performance using this data. Even if it is a simplified estimation compared to a human.

Questions - How to choose the right input parameter? In reality it is never just one parameter but a combination of many. But to simplify, we can start with just one, right?

ML element - We are going to look at the data, choose one parameter, create a simple model that predicts next step (a value) in time, and then see how good/accurate/bad the prediction is compared to the ground truth (GT). The GT is the recorded data from a human drive on the same road.
Our Project (shortened reminder)

Problem - We did another daily drive autonomously. Was it good or bad?

Idea - Let’s take the rosbag and see. Not with human eyes, automatically.

Questions - Is steering angle a good parameter to choose? Yes! ... For now.

ML element - Using a simple model to predict steering angle and see how good is it compared to the ground truth (GT).

GT = recorded data from a human drive on the same track.
Our approach

- Predict **steering angle**
- From **position coordinates** (xy)
- We **don’t** use images
- We do it **per track** (simplification)
- Use **simple** models
Example raw data

<table>
<thead>
<tr>
<th>steering_angle</th>
<th>vehicle_speed</th>
<th>x position</th>
<th>y position</th>
<th>z position</th>
<th>roll</th>
<th>pitch</th>
<th>yaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.04564354995362</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>0.040620186389859</td>
<td>20.04569</td>
<td>9702.57284727479</td>
<td>9735.8590057485</td>
<td>698.707205947973</td>
<td>-0.0029861211964315</td>
<td>0.02915494758357</td>
<td>0.03771457329311</td>
</tr>
<tr>
<td>0.033457633917167</td>
<td>25.95688</td>
<td>9702.45756834948</td>
<td>9735.9149223827</td>
<td>698.745167383363</td>
<td>-0.005265083169834</td>
<td>0.02945173614235</td>
<td>0.03771457329311</td>
</tr>
<tr>
<td>0.0077234512428613</td>
<td>25.95688</td>
<td>9702.45756834948</td>
<td>9735.9149223827</td>
<td>698.745167383363</td>
<td>-0.005265083169834</td>
<td>0.02945173614235</td>
<td>0.03771457329311</td>
</tr>
<tr>
<td>0.021942543260167</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>0.016</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>0.013</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>0.000045580782851</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.044</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.0656683</td>
<td>969.156079099099</td>
<td>20.35472</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.005</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.005</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.004</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.004</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.004</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
<tr>
<td>-0.004</td>
<td>10.004493</td>
<td>7902.52781318427</td>
<td>9735.761641994</td>
<td>698.580933590947</td>
<td>-0.0003125998440134</td>
<td>0.02869386465711</td>
<td>0.03767928435284</td>
</tr>
</tbody>
</table>

Before vs now
Progress

● Our data from 1 track
 ○ 1 manual drive for training data (GT)
 ○ 1 autonomous drive for testing
 ○ Corrected the coordinates
 ○ Converted the angle (just for faster human understanding)

● Formulated the problem
 ○ and reformulated, and repeated

● Trained
 ○ Different models

● Iterated
 ○ Results >> Went back to the drawing board >> trained

● Find out how others do it
 ○ Searching past materials that use images...
Problems

- We need to draw on a map >> no, we don’t.
- We need to use images >> no, we don’t.
- Draw extra lines to help predict angle >> no need.
- Unrealistic vs realistic accuracy calculation.
- We can use LR >> no >> yes >> no.
- We cannot use classifier models >> yes, we can.
- Different results.
- Re-formulating problem.
- Over-complicating the problem.

You have a problem A. You have trained a model B.

Types of questions to ask:

1. Can we trust these results?
2. How good are they?
3. How can we do better?
Example (snapshot of a work segment)

Input: x, y

Labels: steering angle (deg)
If classifier, needs encoding from float to int.
Encoded: {
 -0.677 : 0,
 -0.676 : 1,
 ...
 2.511 : 1952
}

De-encoded after training.

Accuracy using a threshold <= 2 degrees*

* - On a straight path it is OK for the steering angle to change within 2 degrees.
Results

- Linear Regression
- KNeighbors
- Random Forest

Initially 31% accuracy for predicting steering angle from xy position. (unrealistic)
After applying 2 degree threshold 45% accuracy. (realistic)
After overfitting 97% accuracy.

Expectations:

60-80% accuracy using simple model.
Can use for rough estimation if the drive was good or bad.

Main lessons:

- Simple problems can become complex when taking a closer look. And go beyond course materials.
- Do not get stuck with one method (or too few methods). Get “out of the box” in good time.
- The problem may need re-formulating to apply initially discarded methods. More than one solutions to one problem.
- For example: Linear Regression could be used if we divide the path to tiny segments.
- Try methods that were not introduced in the course.
Thanks to our team

Thanks for listening