Smart solar power (P23)

Heigo Ers
Herman Klas Ratas
Mait Metelitsa
Smart Solar Power

Project description:

- Electricity price fluctuations → Optimization of consumption
- Predicting weather and forecasting the solar intensity in the near future can help to decide when there is possible energy surplus.

Product Owner: Ott Kekišev - Proekspert AS

Team:

- Heigo Ers - Chemistry Doctoral Student, studying ionic liquids with computational and experimental methods
- Herman Klas-Ratas - Computer Science and Robotics MSc student, with experience in materials science and mechanical engineering
- Mait Metelitsa - Studying Conversion Master in IT.

Link: https://github.com/heigoers/solarpower_ml
Datasets

Weather Data from 8 Estonian weather stations (2004 - 2020), provided by Estonian Weather Service (solar irradiance, wind speed, temperature, relative humidity, atmospheric pressure)

- Irradiance varied from 0 ... 952 W/m², mean 116 W/m²

RGB Satellite images, 6 months in 2019 (resolution 15 min) from Estonian Weather Service

- 24-hour Microphysics
- Natural Colour composition

Figure 1. Satellite image of Estonia in 24-hour Microphysics RGB composition
Approach 1:
- Predict the total solar irradiance of next hour using weather data of current hour of selected weather station
- Tested different regressions: KNN, Random Forest, Gradient Boosting, Decision Tree with preprocessing (PCA, MinMax Scaler)
- The lowest validation error: RF (68 W/m²)
- Rather poor results as RMSE remained high

Figure 2. RMSE-s of solar irradiance for validation set, shown model with smallest RMSE for each tested regressor
Approach 2:

- Based on weather data from 4 other stations predict solar power training 4 models with automated feature selection and model blending

- Using backward selection, for DT 10/19; GB 12/19; LM 19/19; RR 19/19 features were selected

Figure 3. Scheme of backward feature selection algorithm used

Figure 4. RMSE-s of solar irradiance for validation set
Approach 3:

- Predict the solar irradiance of next hour using satellite images features
- Used timeseries as input, which contained:
 - features from 8 hours of satellite images at weather station coordinates, right pixels found using transformation matrix
 - solar irradiance of next hour at selected coordinates
- Best results with Neural networks, containing LSTM layers.
- Lowest validation set RMSE: 57 W/m^2

Layers: LSTM(64 units) -> Batch Normalization -> LSTM(32 units) -> Dense(1)

Figure 5. Satellite image with markers showing the locations of weather stations
Conclusions

Predicting solar irradiance in near-future with good accuracy proved to be difficult

The best results out of tested models were gained with features from satellite images and Recurrent neural network with LSTM layers
Acknowledgements

We would like to thank:

- Ott Kekišev (Proekspert AS) for the task and advice how to approach the problem

- Aleksei Vaštšenko (National Environment Agency) for the acquisition of satellite images from the European Organisation for the Exploitation of Meteorological Satellites
Thank You for Your Attention!