P04- Volatility-based statistical arbitrage on crypto

Team: Mykyta Luzan, Oleksandr Syzonov, Hermann Yavorskyi
Project owner: Federico Martinazzi (CHANGEHOLDING OÜ)
Cryptocurrencies are in demand as never before

- Mass adoption (El Salvador)
- USD inflation
- Still young and perspective market
- Trading benefits from bigger volatility in comparison with stocks
Key steps to build arbitrage automated bot

Fundamental analysis
Financial and crypto assets background research

Statistical analysis
Applying ML methods to predict price or public attitude

Trading strategy
Set of rules to extract profit from the previous analysis
Approach 1: Predict price

Steps:

1. Collect historical data
2. Split it to ranges
3. Train and evaluate on each range
4. Convert price prediction to binary value (is_growing)
Approach 1: Predict price

Steps:

1. Collect historical data
2. Split it to ranges
3. Train and evaluate on each range
4. Convert price prediction to binary value (is_growing)
Approach 1: Predict price

Steps:

1. Collect historical data
2. Split it to ranges
3. Train and evaluate on each range
4. Convert price prediction to binary value (is_growing)
Approach 1: Predict price

Steps:
1. Collect historical data
2. Split it to ranges
3. Train and evaluate on each range
4. Convert price prediction to binary value (is_growing)

Experiments:
1. Different prediction ranges (1, 5, 15, 30+ days)
2. Multidimensional features
3. Different scaling of the input
4. Applying logarithm to the values
Approach 1: Linear Regression

No log

RMSE: 648.069
Accuracy: 0.502

With log

RMSE: 706.722
Accuracy: 0.505
Approach 1: SVM

No log
- RMSE: 1052.345
- Accuracy: 0.471

With log
- RMSE: 536.756
- Accuracy: 0.476
Approach 1: Random Forest

No log

RMSE: 313.436
Accuracy: 0.497

With log

RMSE: 312.273
Accuracy: 0.513
Approach 2: Predict direction

Steps:
1. Collect historical data
2. Preprocess input to price differences
3. Split it to ranges
4. Train and evaluate classification on each range
Approach 2: Predict direction

Steps:

1. Collect historical data
2. Preprocess input to price differences
3. Split it to ranges
4. Train and evaluate classification on each range
Approach 2: Predict direction

Steps:
1. Collect historical data
2. Preprocess input to price differences
3. Split it to ranges
4. Train and evaluate classification on each range
Approach 2: Predict direction

Steps:
1. Collect historical data
2. Preprocess input to price differences
3. Split it to ranges
4. Train and evaluate classification on each range

Experiments:
1. Different prediction ranges (1, 5, 15, 30+ days)
2. Different scaling of the input
3. Applying logarithm to the values
Approach 2: Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Train Accuracy</th>
<th>Test Accuracy</th>
<th>Train F1-score</th>
<th>Test F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td>0.566</td>
<td>0.516</td>
<td>0.705</td>
<td>0.666</td>
</tr>
<tr>
<td>SVM</td>
<td>0.763</td>
<td>0.545</td>
<td>0.820</td>
<td>0.670</td>
</tr>
<tr>
<td>Random Forest</td>
<td>1.0</td>
<td>0.540</td>
<td>1.0</td>
<td>0.617</td>
</tr>
<tr>
<td>Gradient Boosting</td>
<td>0.847</td>
<td>0.554</td>
<td>0.873</td>
<td>0.647</td>
</tr>
<tr>
<td>XGBoost</td>
<td>1.0</td>
<td>0.530</td>
<td>1.0</td>
<td>0.587</td>
</tr>
</tbody>
</table>
Approach 3: SARIMA

Accuracy: 0.494 F1-score: 0.507
Trading strategies (low risk)
Trading strategies (mid risk)
Trading strategies (high risk)
Final results

Return: 751.08 %

Strategy Equity

Capacity

Select Chart
- Drawdown
- Capacity
- Strategy Equity
- Benchmark
- Assets Sales Volume
- Exposure

Alpha Ranking
- 37.8%
- Your algorithm is in the 42nd percentile.

Research Guide
- 95 Backtests Remaining
- 5 Parameters Detected
- 9 Minutes Research
Project roadmap and progress

<table>
<thead>
<tr>
<th>Steps</th>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Problem analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Data understanding</td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Data collection</td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Infrastructure setup</td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Initial solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Model training and experimentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Bot strategy tuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>8. Comparing different assets for bigger profit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
</tr>
<tr>
<td>9. Final solution and presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Done**
- **Partially done**
Lessons

1. Data collection is not that easy
2. Keep in mind your hardware limitations
3. Preprocessing matters more than models
4. Crypto trading is still need some research