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Exercise 1. Cross-entropy loss

Cross entropy loss, also known as log-loss, can be used to define the loss function in machine
learning and optimization.

CE =
1

n

n∑
i=1

(−yi log p̂(xi)− (1− yi) log(1− p̂(xi)))

In the lecture we saw that in logistic regression we could use the log-loss a cost function to
minimize in order to find the best-fitting logistic curve on 2 class data.

In the below table you are given scores from 2 different models and the true labels (n=8):

True label Model 1 Model 2
1 0.9 0.5
1 0.8 0.6
0 0.5 0.4
0 0.1 0.3
1 0.3 0.2
0 0.1 0.5
0 0.2 0.8
1 0.7 0.2

(a) Just by looking at the table, what do you think, which of the models has lower cross-entropy
loss?

(b) Check your answer by calculating the losses for both of these models.

(c) In the below graph you are given the log-loss values in case of fixed true class y = 1 when
changing the assigned score from 0 to 1. How would the plot look like in case of y = 0?
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(d) What is the difference between entropy and cross-entropy measures?

Hint: entropy is defined as: E = −
∑n

i=0 p(Xi) · log(p(Xi))

Exercise 2. Gradient descent

In logistic regression, our goal is to minimize the cross-entropy loss:

argmin
w,b

1

n

n∑
i=1

(−yi log p̂(xi)− (1− yi) log(1− p̂(xi)))

One way to do this is to use gradient descent (GD) or stochastic gradient descent (SGD)
algorithms.

The goal of the algorithms is to minimize function f(θ). In SGD, we use the fact that the
function to optimize can be written in form:

f(θ) =

n∑
i=1

fi(θ)

The following pseudocodes show how these algorithms work.

Algorithm 1 Gradient Descent
1: procedure GD
2: initialize θ
3: while not converged do
4: θ ← θ − η∇f(θ)

return θ

Algorithm 2 Stochastic Gradient Descent
1: procedure SGD
2: initialize θ
3: while not converged do
4: randomly shuffle the indices 1 . . . n
5: for each index i do
6: θ ← θ − η∇fi(θ)

return θ

(a) What is θ in logistic regression? What is f(θ)? What is ∇f(θ)?

(b) What is fi(θ)? What is ∇fi(θ)?

(c) What is the difference between GD and SGD?

Hint: Slide 68 of lecture 8
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Exercise 3. Bayes-optimality

Bayes optimal model is

p∗(x) =
P (X = x|Y = 1)

P (X = x|Y = 0) + P (X = x|Y = 1)

Let’s assume that we know that in our data the positive and negative classes are normally
distributed with same standard deviation and different means. We also assume that the classes
are balanced. We observe an instance x (vertical dashed line).

(a) What class label should we predict for x and why?

(b) What do a and b show in this plot?

(c) For the instance x find the probability of being positive, expressed in terms of a and b. (Hint:
slide 46 of lecture 8 )

(d) The predicted probabilities in this setting are equal to the ones given by the Bayes-optimal
model. Why can’t we learn the Bayes-optimal model from the training data?

(e) Where is the decision boundary in this plot?
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Exercise 4. Calibration

In the lecture we learned what it means for a model to be calibrated.
In practice, the process of calibration is usually the following:

• train a model on your training set

• predict scores with the trained model on a calibration set

• using the predicted scores and true labels, learn a calibration map (e.g using isotonic cali-
bration, Platt scaling, etc).

• in future predictions you apply the model and then the learned calibration map on top of
the model’s output to get a calibrated probability

The idea is illustrated in the below figure.

(a) If you would have the probability scores and true class labels, how can you check whether
the model is calibrated or not? Can you come up with a plot, such that this check could be
done visually?

Hint: read this material: https://changhsinlee.com/python-calibration-plot/
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