MTAT.03.227 Machine Learning

Principal Component Analysis

Fitting Multivariate Normal Distributions

Sven Laur
University of Tartu
Two-dimensional normal distribution

We can form a two-dimensional normal distribution by considering two independent quantities that have a normal distribution.

As the choice of coordinate axis is sometimes arbitrary, e.g., bullet holes in shooting targets, there are also other ways to form a normal distribution.
Scaling and shifting

A univariate normal distribution $\mathcal{N}(\mu, \sigma^2)$ can be obtained from a standard normal distribution $\mathcal{N}(0, 1)$ by shifting and scaling. Hence, the distribution $y_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $y_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ can be obtained by scaling and shifting source distribution $x_1 \sim \mathcal{N}(0, 1)$ and $x_2 \sim \mathcal{N}(0, 1)$.
Rotations

Besides rescaling and shifting we can also rotate the coordinate axis.
Affine transformations

Let $x_1 \sim \mathcal{N}(0, 1)$ and $x_2 \sim \mathcal{N}(0, 1)$ be the quantities generated by independent normal distributions. Let y_1 and y_2 quantities that are observed after the scaling, translation and rotation of the coordinate plane.

Then we can express x and y in terms of an affine transformation

$$y = Ax + \mu,$$
$$x = A^{-1}(y - \mu).$$

Observation. Affine transformations are closed with respect to composition, i.e., applying two affine transformations yields a new affine transformation.

Remark. Not all affine transformations are invertible.
What is density?

Recall that density assigns probability to small enough regions \(\mathcal{R} \):

\[
\Pr \left[\begin{array}{c}
x_1^* \leftarrow \mathcal{N}(0, 1) : x_1 \leq x_1^* \leq x_1 + \Delta x_1 \\
x_2^* \leftarrow \mathcal{N}(0, 1) : x_2 \leq x_2^* \leq x_2 + \Delta x_2
\end{array} \right] = p(x_1, x_2) \cdot \frac{\Delta x_1 \Delta x_2}{S} + \varepsilon
\]

where \(\varepsilon = o(\Delta x_1 \cdot \Delta x_2) \) in the process \(\Delta x_1 \rightarrow 0 \) and \(\Delta x_2 \rightarrow 0 \).

Remark. Regions \(\mathcal{R} \) do not have to be rectangular as long as:

- The area \(S(\mathcal{R}) \) of a region can be computed.
- Probability can be assigned to the region \(\mathcal{R} \) and its scalings.

Then \(\varepsilon = o(S) \) when we rescale the region \(\mathcal{R} \) around the point \((x_1, x_2) \).
Density recalibration

Any affine transformation changes a square grid into parallelograms.

As a result, the area of the regions is different on the left and on the right:

\[p(x_1, x_2) \cdot S_1 \approx q(y_1, y_2) \cdot S_2 \quad \implies \quad q(y_1, y_2) = \frac{S_1}{S_2} \cdot p(x_1, x_2) \]

Fortunately, the ratio between areas are constant over the entire plane!
Density of two-variate normal distribution

The density of \((x_1, x_2)\) pairs can be computed based on independence:

\[
p(x_1, x_2) = p(x_1) \cdot p(x_2) = \frac{1}{2\pi} \cdot \exp\left(-\frac{x_1^2 + x_2^2}{2}\right).
\]

To estimate density \(q(y_1, y_2)\), we must find the corresponding \((x_1, x_2)\):

\[
y = Ax + \mu \iff x = A^{-1}(y - \mu).
\]

Thus we get

\[
q(y_1, y_2) = \frac{S_1}{S_2} \cdot \frac{1}{2\pi} \cdot \exp\left(-\frac{(y - \mu)^T A^{-T} A^{-1}(y - \mu)}{2}\right)
\]

\[
= \frac{1}{\sqrt{\det(\Sigma)}} \cdot \frac{1}{2\pi} \cdot \exp\left(-\frac{(y - \mu)^T \Sigma^{-1}(y - \mu)}{2}\right).
\]
Illustrative example

\[y = Ax + \mu \]

- Affine transformation changes the square grid into parallelograms.
- Affine transformation changes circular equiprobability lines into ellipses.
- The axes of the ellipses may intersect with the sides of parallelograms.
Generalisation to multivariate case

If observed quantities y are generated by applying the affine transformation

$$y = Ax + \mu \iff x = A^{-1}(y - \mu)$$

to the independent source signals $x_1, \ldots, x_n \sim \mathcal{N}(0, 1)$, then the resulting distribution is a multivariate normal distribution with the density:

$$q(y) = \frac{1}{(2\pi)^{n/2}} \cdot \frac{1}{\sqrt{\det(\Sigma)}} \cdot \exp \left(-\frac{(y - \mu)^T \Sigma^{-1} (y - \mu)}{2} \right)$$

where $\Sigma^{-1} = A^{-T} A^{-1}$ is a positively definite symmetric matrix.
Distribution reconstruction task

Original goal. Given the set of observations \(y_1, \ldots, y_m \) determine the affine transformation \(y = Ax + \mu \) and original source signals \(x_1, \ldots, x_m \).

Impossibility result. The matrix \(A \) can be recovered \textit{only} up to rotations.
Simplified distribution reconstruction task

Achievable goal. Given the set of observations y_1, \ldots, y_m determine the affine transformation by fixing the centre and axis of the ellipsoid.

- We need to find the origin and semi-axes a_1, \ldots, a_n of the ellipsoid.
- Unit vectors e_1, \ldots, e_n are mapped to semi-axes a_1, \ldots, a_n of ellipsoid.
Variance for a fixed direction

Fact. Orthogonal projection onto a unit vector \(w \) is given by scalar product.

Question. What is the direction \(w \) that maximises the variance for ellipsoid?

\[
\text{Var}(w^T \text{diag}(a)x) = \text{Var} \left(\sum_{i=1}^{n} w_i a_i x_i \right) = \sum_{i=1}^{n} w_i^2 a_i^2 .
\]

The variance is maximised in the direction of the longest ellipse axis \(a_1 \).

Question. How is the center of the ellipsoid and mean values connected?

\[
\mathbf{E}(Ax + \mu) = \mathbf{E}(Ax) + \mathbf{E}(\mu) = \mu .
\]
Principal component analysis

▷ Compute the average value of the observations y_1, \ldots, y_m:

$$\hat{\mu} \leftarrow \frac{y_1 + \cdots + y_m}{m}.$$

▷ Centre the data by substituting $\hat{\mu}$:

$$y_i \leftarrow y_i - \hat{\mu}, \quad i \in \{1, \ldots, m\}.$$

▷ Find the unit direction w_1 that has a maximal empirical variance:

$$F(w) = \text{Var}(w^T y_1, \ldots, w^T y_n) = \frac{(w^T y_1)^2 + \cdots + (w^T y_m)^2}{m}.$$

▷ Find unit directions w_i orthogonal to previous directions that maximise the empirical variance of the corresponding the projection onto w_i.

MTAT.03.227 Machine Learning, Principal Component Analysis, April 2, 2013 13
Covariance matrix and optimisation goal

We can use matrix algebra to simplify the variance estimate

\[
F(w) = \frac{1}{m} \cdot \left(w^T y_1 y_1^T w + \cdots + w^T y_m y_m^T w \right)
= w^T \left(\frac{y_1 y_1^T + \cdots + y_m y_m^T}{m} \right) w
\]

The \(n \times n \) matrix in the middle is known as a covariance matrix \(\Sigma \).

Due to the restriction \(\|w\|^2_2 = w^T w = 1 \), we have to use Lagrange’ trick:

\[
F_*(w) = w^T \Sigma w - 2\lambda w^T w \quad \Rightarrow \quad \frac{F_*(\partial w)}{\partial w} = 2\Sigma w - 2\lambda w = 0.
\]
Principal components as eigenvectors

The $F_*(w)$ is maximised only if the direction w is an eigenvector of Σ:

$$\Sigma w = \lambda w \quad \Rightarrow \quad w^T \Sigma w = w^T \lambda w = \lambda .$$

Fact. If $n \times n$ matrix is symmetric and positively definite then there exists n orthogonal eigenvectors w_1, \ldots, w_n with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n > 0$.

Corollary. Principal components corresponding to observations y_1, \ldots, y_m are the eigenvectors of the covariance matrix Σ.
Principal component analysis as a rotation

Reconstruction of the source signal can be viewed as a translation followed by a rotation to orientate the ellipsoid wrt coordinate axis.

As vectors w_1, \ldots, w_n are orthogonal, the rotation can be done through computing projections (read scalar products):

$$ x_i^T = (y_i - \hat{\mu}_0)(w_1 \parallel \cdots \parallel w_n) = (y_i - \hat{\mu})W . $$
Maximum likelihood estimate

The algorithm formulated above was based on *ad hoc* reasoning:

▷ Empirical estimates for the mean and variance are not precise!

Theoretically correct way to handle the problem is

▷ obtain the maximum likelihood estimate on the model parameters,
▷ determine the translation and rotation based on the model parameters.

What are the model parameters?

▷ Parameters of the density formula Σ and μ.
▷ Parameters of the affine transformation A and μ.
Likelihood function under iid assumption

If all observations y_1, \ldots, y_m are independent then

$$p[y_1, \ldots, y_m | \Sigma, \mu] = \prod_{i=1}^{m} p[y_i | \Sigma, \mu]$$

where

$$p[y_i | \Sigma, \mu] = \frac{1}{(2\pi)^{n/2}} \cdot \frac{1}{\sqrt{\det(\Sigma)}} \cdot \exp\left(-\frac{(y_i - \mu)^T \Sigma^{-1} (y_i - \mu)}{2}\right)$$

The log-likelihood of the data $\ln p[y_1, \ldots, y_m | \Sigma, \mu]$ can be expressed

$$\mathcal{L}(\Sigma, \mu) = \text{const} - \frac{m}{2} \cdot \ln \det(\Sigma) - \sum_{i=1}^{m} \frac{(y_i - \mu)^T \Sigma^{-1} (y_i - \mu)}{2}$$

Now we have to find the arrangement (Σ, μ) that maximises $\mathcal{L}(\Sigma, \mu)$.
Gradients of the log-likelihood function

Gradient with respect to the shift μ:

$$\frac{\partial L}{\partial \mu} = - \sum_{i=1}^{m} \frac{\partial}{\partial \mu} (y_i - \mu)^T \Sigma^{-1} (y_i - \mu) = - \sum_{i=1}^{m} \frac{\Sigma^{-1} (y_i - \mu)}{2} \cdot (-1)$$

Gradient with respect to the inverse matrix Σ^{-1}:

$$\frac{\partial L}{\partial (\Sigma^{-1})} = \frac{m}{2} \cdot \frac{\partial}{\partial (\Sigma^{-1})} \ln \det (\Sigma) - \sum_{i=1}^{m} \frac{\partial}{\partial (\Sigma^{-1})} \frac{(y_i - \mu)^T \Sigma^{-1} (y_i - \mu)}{2}$$

$$= \frac{m}{2} \cdot \Sigma^T - \sum_{i=1}^{m} \frac{(y_i - \mu)^T (y_i - \mu)}{2}$$

As Σ is symmetric and Σ^{-1} exists we can derive closed form solutions.
Maximum likelihood estimates for parameters

The shift must be the mean of all observations

\[\mu = \frac{1}{m} \cdot \sum_{i=1}^{m} y_i. \]

The covariance matrix

\[\Sigma = \frac{1}{m} \cdot \sum_{i=1}^{m} (y_i - \mu)(y_i - \mu)^T. \]

Correctness of PCA. As ML estimates are exactly the same we used in principal component analysis, the method is theoretically justified!
Dimensionality reduction

What if the actual data $\mathbf{x}_1, \ldots, \mathbf{x}_m$ lies in a lower-dimensional plane and the observation $\mathbf{y}_1, \ldots, \mathbf{y}_m$ are obtained by random shifts?

The shifts can be either orthogonal to the plane or just random. The first model is easier to analyse while the second is more plausible.
Maximum likelihood estimate

Let \mathcal{H} be the plane. Assume that the random shifts ε_i are orthogonal to the plane and have a normal distribution $\mathcal{N}(0, \sigma I)$. Then

$$p[y_i|\mathcal{H}, \sigma] = \text{const} \cdot \exp\left(-\frac{d_i^2}{2\sigma^2} \right)$$

where d_i is the distance between the plane \mathcal{H} and the point y_i. Thus

$$p[y_1, \ldots, y_m|\mathcal{H}, \sigma] = \text{const} \cdot \exp\left(-\sum_{i=1}^{m} \frac{d_i^2}{2\sigma^2} \right)$$

and the maximum likelihood estimate of the plane minimises sum of the distance squares. Corresponding estimates of x_1, \ldots, x_m are projections of y_1, \ldots, y_m to the plane \mathcal{H}.
Another characterisation of PCA

Fact. If the data is centred then PCA chooses the direction w_1 such that the sum of squares of the projections $w_1^T y_i$ is maximal.

Corollary. PCA chooses directions w_1, \ldots, w_n such that the sum of distance squares from the hyperplane formed by w_1, \ldots, w_k is minimal.
PCA as a dimensionality reduction tool

Corollary. PCA rotates the data such way that first k coordinates of the rotated data correspond to maximum likelihood reconstructions of original vectors corrupted with white Gaussian noise $\mathcal{N}(0, \sigma I)$.

Alternatively, we can view the last components of the source signal x as the uninformative noise. The overall noise component should be small.
Going beyond PCA

Weighted Principal Component Analysis:
▷ Sometimes data contains potential outliers.
▷ Sometimes we can assign reliability scores to the data points.

Principal curves and manifolds
▷ The original data might be on a low dimensional manifold.
▷ The observed data is corrupted by additive white gaussian noise.
▷ The task is to reconstruct the manifold and ML estimate for the data.

Independent Component Analysis
▷ What if the source components are non-gaussian?
▷ Then the reconstruction is possible up to scaling!
Reconstruction of the underlying curve is much more difficult.

- We must fix a curve parametrisation
- The task is different form regression since we have only outputs.
Independent Component Analysis

Assume that the components of the source data x_1, \ldots, x_m are independent but an unknown affine transformation $y = Ax + \mu$ disturbs observations.

It is possible to recover the translation and rotation only if independent components are sufficiently different form the normal distribution.