Data Mining MTAT.03.183
(4AP = 6EAP)
Clustering and Seriation

Jaak Vilo
2014 Spring

Seriation?

Clustering

• Grouping objects by similarity
• Take all data and ask – what are typical examples and groups in data
Topics

• What is clustering
• Hierarchical clustering
• K-means
 – K-medoids
 – EM
• SOM
• Density based methods (DBSCAN)
• Conceptual clustering
 ...

Unsupervised vs. Supervised

Find groups inherent to data (clustering)
Find a “classifier” for known classes

Unsupervised vs. Supervised

Find groups inherent to data (clustering)
Find a “classifier” for known classes

Clustering

• An old problem
• Many methods
• No single best “suites all needs” method

Vehicle Example

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Top speed</th>
<th>Colour</th>
<th>Air resistance</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>220</td>
<td>red</td>
<td>0.30</td>
<td>1300</td>
</tr>
<tr>
<td>V2</td>
<td>230</td>
<td>black</td>
<td>0.32</td>
<td>1400</td>
</tr>
<tr>
<td>V3</td>
<td>260</td>
<td>red</td>
<td>0.29</td>
<td>1500</td>
</tr>
<tr>
<td>V4</td>
<td>140</td>
<td>gray</td>
<td>0.35</td>
<td>800</td>
</tr>
<tr>
<td>V5</td>
<td>155</td>
<td>blue</td>
<td>0.33</td>
<td>950</td>
</tr>
<tr>
<td>V6</td>
<td>130</td>
<td>white</td>
<td>0.40</td>
<td>600</td>
</tr>
<tr>
<td>V7</td>
<td>100</td>
<td>black</td>
<td>0.50</td>
<td>3000</td>
</tr>
<tr>
<td>V8</td>
<td>105</td>
<td>red</td>
<td>0.60</td>
<td>2500</td>
</tr>
<tr>
<td>V9</td>
<td>110</td>
<td>gray</td>
<td>0.55</td>
<td>3500</td>
</tr>
</tbody>
</table>

Vehicle Clusters

Sports cars
Medium market cars
Lorries
Motivation: Why Clustering?

Problem: Identify (a small number of) groups of similar objects in a given (large) set of objects.

Goals:
- Find representatives for homogeneous groups \(\rightarrow\) Data Compression
- Find “natural” clusters and describe their properties \(\rightarrow\) “natural” Data Types
- Find suitable and useful grouping \(\rightarrow\) “useful” Data Classes
- Find unusual data object \(\rightarrow\) Outlier Detection

What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.
- Edge-Detection (advantage to smooth contours)
- Texture clustering

Clustering cont...

Types
- Partitioning vs Hierarchical
- Exclusive vs Overlapping vs Fuzzy membership
- Complete vs partial

2-D data

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

5-Dimensional

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
Exercise: cluster 2-D data

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
</tr>
</tbody>
</table>

2-D data

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
</tr>
</tbody>
</table>

Ingredients

- Similarity/distance between objects
- Find “closest” elements

Distance measures: which two profiles are similar to each other?

- Euclidean, Manhattan etc.
- Correlation, angle, etc.
- Rank correlation
- Time warping

Distance measures

- How to formally describe which objects are “close” to each other, and which are not
- More than one way to define distances.
- Distance is a metric, if
 - $d(X, X) = 0$
 - $d(X, Y) = d(Y, X) \geq 0$
 - $d(A, B) \leq d(A, C) + d(C, B)$
Some standard distance measures

- **Euclidean distance**
 \[d(f, g) = \sqrt{\sum_{i=1}^{c} (fi - gi)^2} \]

- **Euclidean squared**
 \[d(f, g) = \sum_{i=1}^{c} (fi - gi)^2 \]

- **Manhattan (city-block)**
 \[d(f, g) = \sum_{i=1}^{c} |fi - gi| \]

- **Average distance**
 \[d(f, g) = \frac{1}{c} \sum_{i=1}^{c} (fi - gi)^2 \]

Pearson correlation

\[d(f, g) = 1 - \frac{\sum_{i=1}^{c} (fi - \bar{f})(gi - \bar{g})}{\sqrt{\sum_{i=1}^{c} (fi - \bar{f})^2 \sum_{i=1}^{c} (gi - \bar{g})^2}} \]

If means of each column are 0, then it becomes:

\[d(f, g) = 1 - \frac{\sum_{i=1}^{c} fi gi}{\sqrt{\sum_{i=1}^{c} f_i^2 \sum_{i=1}^{c} g_i^2}} = 1 - \cos \Theta \]

Chord distance

\[d(f, g) = \sqrt{2(1 - \frac{\sum_{i=1}^{c} fi gi}{\sqrt{\sum_{i=1}^{c} f_i^2 \sum_{i=1}^{c} g_i^2}})} \]

\[d(f, g) = \sqrt{2(1 - \cos \Theta)} \]

Euclidean distance between two vectors whose length has been normalized to 1

Rank correlation

\[d(f, g) = 1 - \frac{6 \sum_{i=1}^{c} (\text{rank}_f - \text{rank}_g)}{c(c^2 - 1)} \]

- Rank - smallest has rank 1, next 2, etc.
- Equal values have rank that is average of the ranks

\[
\begin{align*}
f & = 3 & 17 & 12 & 12 & 8 \\
\text{rank} & = 1 & 5 & 3.5 & 3.5 & 2
\end{align*}
\]
Hierarchical clustering

1. All against all distance matrix
2. Linkage strategy – identify closest clusters and merge

Performance: \(O(dn^2) \)

Hierarchical clustering

Keep joining together two closest clusters by using the:

- Minimum distance \(\Rightarrow \) Single linkage
- Maximum distance \(\Rightarrow \) Complete linkage
- Average distance \(\Rightarrow \) Average linkage (UPGMA, WPGMA)

\[
\text{Performance: } O(dn^2)
\]
Hierarchical clustering

- Calculate all pairwise distances
 - and assign each object into a singleton cluster

- While more than 1 cluster
 - select smallest distance
 - merge the two clusters
 - update the changed distances after merger

Update distances

- Merge C_a, C_b into C

- Re-calculate all distances $D(C, C)$

Merge C_a, C_b into C

- $D(C, C) = \min\{D(C, C_a), D(C, C_b)\}$
 - Single link; Minimal distance

- $D(C, C) = \max\{D(C, C_a), D(C, C_b)\}$
 - Complete link; Maximum distance

- $D(C, C) = \text{average}\{D(C, C_a), D(C, C_b)\}$
 - $n_a/(n_a+n_b) * D(C, C_a) + n_b/(n_a+n_b) * D(C, C_b)$
 - UPGMA – Unweighted Pair Group Method Average

How to Define Inter-Cluster Similarity

- $\text{MIN, MAX, Group Average, Distance Between Centroids}$
- Other methods driven by an objective function
 - Ward’s Method uses squared error

How to Define Inter-Cluster Similarity

- $\text{MIN, MAX, Group Average, Distance Between Centroids}$
- Other methods driven by an objective function
 - Ward’s Method uses squared error
How to Define Inter-Cluster Similarity

MIN
MAX
Group Average
Distance Between Centroids
Other methods driven by an objective function
- Ward’s Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity

MIN
MAX
Group Average
Distance Between Centroids
Other methods driven by an objective function
- Ward’s Method uses squared error

Proximity Matrix

Input data

Input data visualized

Euclidean distances

Average linkage hierarchical clustering

UPGMA

\[D(C_k, (C_1 \cup C_2)) = -\frac{|C_1|}{|C_1| + |C_2|} D(C_k, C_1) + \frac{|C_2|}{|C_1| + |C_2|} D(C_k, C_2) \]

WPGMA:

\[D(C_k, (C_1 \cup C_2)) = \frac{1}{2} \left(D(C_k, C_1) + D(C_k, C_2) \right) \]

Single-Linkage:

\[D(C_k, (C_1 \cup C_2)) = \min \{ D(C_k, C_1), D(C_k, C_2) \} \]
Running time for hierarchical clustering

- O(n^2) distances
- n-1 times merge
 - select smallest distance
 - update all distances to new cluster

Hierarchical clustering output

Design any heat-map coloring scheme

Heat map color schema design
Limits of standard clustering

- Hierarchical clustering is (very) good for visualization (first impression) and browsing
- Speed for modern data sets remains relatively slow (minutes or even hours)
- ArrayExpress database needs some faster analytical tools
- Hard to predict number of clusters (⇒Unsupervised)

Hierarchical clustering:

- Each subtree is a cluster.
- Hierarchy is built by iteratively joining two most similar clusters into a larger one.

Fast Approximate Hierarchical Clustering using Similarity Heuristics

Hierarchical clustering is applied in gene expression data analysis, number of genes can be 20000+

Monitor size 1600x1200 pixels

6200 genes, 80 exp.

Laptop: 800x600

VisHiC, 2009

VisHiC; 2009

Developed and implemented in Expression Profiler in October 2000 by Jaak Vilo

ArrayExpress database needs some faster analytical tools

Hard to predict number of clusters (⇒Unsupervised)
Fast Hierarchical Clustering
Avoid calculating all $O(n^2)$ distances:

- Estimate distances
- Use pivots
- Find close objects
- Cluster with partial information

Representative-Based Clustering

- Aims at finding a set of objects among all objects (called representatives) in the data set that best represent the objects in the data set. Each representative corresponds to a cluster.
- The remaining objects in the data set are then clustered around these representatives by assigning objects to the cluster of the closest representative.

Remarks:
1. The popular k-medoid algorithm, also called PAM, is a representative-based clustering algorithm. K-means also shares the characteristics of representative-based clustering, except that the representatives used by k-means not necessarily have to belong to the data set.
2. If the representatives do not need to belong to the dataset we call the algorithms prototype-based clustering. K-means is a prototype-based clustering algorithm.
K-means, K-medoids, ...

• Partition the data points into K groups
• Each group is centered around it’s mean or medoid
• Mean is an “abstract point”
• Medoid: most central object

K-means clustering

Given a set of observations \(\{x_1, x_2, \ldots, x_n\} \), where each observation is a \(d \)-dimensional real vector, \(k \)-means clustering aims to partition the \(n \) observations into \(k \) sets \(\{S_1, S_2, \ldots, S_k\} \) so as to minimize the within-cluster sum of squares (WCSS):

\[
\text{arg min}_{\mathbf{S}} \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - \mu_i\|^2
\]

where \(\mu_i \) is the mean of points in \(S_i \).

Jaak Vilo and other authors
UT: Data Mining 2009
The K-Means Clustering Method

• Given k, the k-means algorithm is implemented in 4 steps:
 1. Partition objects into k nonempty subsets
 2. Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 3. Assign each object to the cluster with the nearest seed point.
 4. Go back to Step 2, stop when no more new assignment.

K-means

• Finds local optimum
 – vary many times with random start
 – make an "educated guess" to start with
 • e.g. sample the data, perform hierarchical clustering, select K "centers".

K-means clustering output

URLMAP:

K-Means Clusters
Iris Species
Vector quantization

Vector quantization of colors present in the image above into Voronoi cells using k-means reducing the color palette of an image to a fixed number of colors k. k-means originates from signal processing, and still finds use in this domain. The k-means algorithm can easily be used for this task and produces competitive results.

Comments on K-Means

Strength

• Relatively efficient: O(k*n*d), where n is # objects, k is # clusters, and d is # iterations, d is the # dimensions. Usually, d, k, t << n, in this case, K-Means’s runtime is O(n).
• Storage only O(n) — in contrast to other representative-based algorithms, only computes distances between centroids and objects in the dataset, and not between objects in the dataset; therefore, the distance matrix does not need to be stored.
• Easy to use; well studied; we know what to expect
• Finds local optimum of the SSE fitness function. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
• Implicitly uses a fitness function (finds a local minimum for SSE see later) — does not waste time computing fitness values

Weakness

• Applicable only when mean is defined — what about categorical data?
• Need to specify k, the number of clusters, in advance
• Sensitive to outliers
• Not suitable to discover clusters with non-convex shapes
• Sensitive to initialisation; bad initialisation might lead to bad results.

K-medoids

• Choose the cluster center to be one of the existing objects.
• Why?
 • If more complex data or distance measure the “Real” center could not be found easily
 • What is the mean of categorical data? — yellow, red, pink?
 • Instead of trying to “invent” — use one of the existing objects, whatever the distance measure

Convex Shape Cluster

• Convex Shape: if we take two points belonging to a cluster then all the points on a direct line connecting these two points must also be in the cluster.
• Shape of K-means/K-medoids clusters are convex polygons ⊆ Convex Shape.
• Shapes of clusters of a representative-based clustering algorithm can be computed as a Voronoi diagram for the set of cluster representatives.
• Voronoi cells are always convex, but there are convex shapes that a different from those of Voronoi cells.

Voronoi Diagram for a Representative-based Clustering

Each cell contains one representative, and every location within the cell is closer to that sample than to any other sample.

A Voronoi diagram divides the space into such cells.

Voronoi cells define cluster boundary.
Representative-Based Clustering ... (Continued)

- Attribute 1
- Attribute 2

Representative-Based Supervised Clustering ... (continued)

- Attribute 1
- Attribute 2

Objective of RSC: Find a subset O_R of O such that the clustering X obtained by using the objects in O_R as representatives minimizes $q(X)$; q is an objective/fitness function.

EM — Expectation Maximization

- EM — A popular iterative refinement algorithm
- An extension to k-means
 - Assign each object to a cluster according to a weight (prob. distribution)
 - New means/covariances are computed based on weighted measures
- General idea
 - Starts with an initial estimate of the parameter vector
 - Iteratively refines the patterns against the mixture density produced by the parameter vector
 - The rescored patterns are used to update the parameter updates
 - Patterns belonging to the same cluster, if they are placed by their scores in a particular component
- Algorithm converges fast but may not be in global optima

The EM (Expectation Maximization) Algorithm

- Initially, randomly assign k cluster centers
- Iteratively refine the clusters based on two steps
 - Expectation step: assign each data point X_i to cluster C_k with the following
 $$ P(X_i \in C_k) = p(C_k | X_i) = \frac{p(C_k)p(X_i | C_k)}{p(X_i)} $$
 - Maximization step:
 - Estimation of model parameters
 $$ m_k = \frac{1}{N} \sum_{i=1}^{N} X_i P(X_i \in C_k) $$

- Mldemos - http://mldemos.epfl.ch/
MEM – visual output

QUERY:
POU5F1

Red: similar to query
Blue: distant / not similar to query

Query of OCT4 (POU5F1)

E-Health

SOM

- "Neural network map"

Self Organising Maps (SOM)

MxN matrix of neurons, each representing "a cluster"
Object X is put to Wi, to which it is most similar.
Wi and its near surrounding is changed to resemble X more
Train, train, train...

Problem - there is no clear objective function to map
dimensional data to 2 dimensions...

Motivation: The Problem Statement

- The problem is how to find out semantics relationship among lots of information without manual labor
 - How do I know, where to put my new data in, if I know nothing about information's topology?
 - When I have a topic, how can I get all the information about it, if I don't know the place to search them?

Motivation: The Idea

- Computer know automatically information classification and put them together
- Text objects must be automatically produced with semantics relationships

Semantics Map
Self-Organizing Maps: Origins

Self-Organizing Maps
- Ideas first introduced by C. von der Malsburg (1973), developed and refined by T. Kohonen (1982)
- Neural network algorithm using unsupervised competitive learning
- Primarily used for organization and visualization of complex data
- Biological basis: 'brain maps'

Teuvo Kohonen

Self-Organizing Maps

SOM - Architecture

- Lattice of neurons ('nodes') accepts and responds to set of input signals
- Responses compared; 'winning' neuron selected from lattice
- Selected neuron activated together with 'neighbourhood' neurons
- Adaptive process changes weights to more closely resemble inputs

Self-Organizing Maps

SOM - Architecture

- 2d array of neurons
- Weighted synapses
- Set of input signals (connected to all neurons in lattice)

Self-Organizing Maps

Helsinki University of Technology

SOM – Result Example

Classifying World Poverty

‘Poverty map’ based on 39 indicators from World Bank statistics (1992)

Initialisation

(i) Randomly initialise the weight vectors \(w_j \) for all nodes \(j \)
Finding a Winner

- (iii) Find the best-matching neuron \(\omega(x) \), usually the neuron whose weight vector has the smallest Euclidean distance from the input vector \(x \)

\[
d_{a,b} = \sqrt{\sum (a_i - b_i)^2}
\]

- The winning node is that which is in some sense ‘closest’ to the input vector.

Weight Update

- SOM Weight Update Equation

 \[
 w_i(t+1) = w_i(t) + \mu_i(t) \lambda_{00}(i,t) [x - w_i(t)]
 \]

 - The weights of every node are updated at each cycle by adding the current learning rate \(\mu \) \times Degree of neighbourhood with respect to winner \(\lambda_{00} \) \times Difference between current weights and input vector

- Example of \(\lambda_{00}(i,t) \)

Example: Self-Organizing Maps

A grouping according to similarity has emerged

Web Document Clustering Using SOM

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword “mining”
- Based on websom.hut.fi Web page

Input vector

(ii) Choose an input vector \(x \) from the training set

In computer texts are shown as a frequency distribution of one word.

A Text Example:

Self-organizing maps (SOMs) are a data visualization technique invented by Professor Teuvo Kohonen which reduce the dimensions of data through the use of self-organizing neural networks. The problem that data visualization attempts to solve is that humans simply cannot visualize high dimensional data as is so is the technique invented to help us understand this high dimensional data.

Finding a Winner

(iii) Find the best-matching neuron \(\omega(x) \), usually the neuron whose weight vector has the smallest Euclidean distance from the input vector \(x \)

\[
d_{a,b} = \sqrt{\sum (a_i - b_i)^2}
\]

- The winning node is that which is in some sense ‘closest’ to the input vector.

Weight Update

- SOM Weight Update Equation

 \[
 w_i(t+1) = w_i(t) + \mu_i(t) \lambda_{00}(i,t) [x - w_i(t)]
 \]

 - The weights of every node are updated at each cycle by adding the current learning rate \(\mu \) \times Degree of neighbourhood with respect to winner \(\lambda_{00} \) \times Difference between current weights and input vector

- Example of \(\lambda_{00}(i,t) \)

Example: Self-Organizing Maps

A grouping according to similarity has emerged

Web Document Clustering Using SOM

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword “mining”
- Based on websom.hut.fi Web page

Finding a Winner

(iii) Find the best-matching neuron \(\omega(x) \), usually the neuron whose weight vector has the smallest Euclidean distance from the input vector \(x \)

\[
d_{a,b} = \sqrt{\sum (a_i - b_i)^2}
\]

- The winning node is that which is in some sense ‘closest’ to the input vector.

Weight Update

- SOM Weight Update Equation

 \[
 w_i(t+1) = w_i(t) + \mu_i(t) \lambda_{00}(i,t) [x - w_i(t)]
 \]

 - The weights of every node are updated at each cycle by adding the current learning rate \(\mu \) \times Degree of neighbourhood with respect to winner \(\lambda_{00} \) \times Difference between current weights and input vector

- Example of \(\lambda_{00}(i,t) \)

Example: Self-Organizing Maps

A grouping according to similarity has emerged

Web Document Clustering Using SOM

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword “mining”
- Based on websom.hut.fi Web page
Clustering etc. algorithms

- Hierarchical clustering methods + visualisation
- K-means, Self Organising Maps (SOM)
- SOTA trees (Self Organising Maps + Tree)
- Fuzzy, EM (object can belong to several clusters)
- Graph theory (cliques, strongly connected components)
- Similarity search: X -> Y s.t. d(X,Y)< 0.3
- Model based (rediscover distributions)
- Planar embeddings, Multidimensional scaling
- Principal Component Analysis
- Correspondence analysis
- Independent Component Analysis

Other Clustering Methods

- PCA (Principal Component Analysis)
 - Also called SVD (Singular Value Decomposition)
 - Reduces dimensionality of gene expression space
 - Finds best view that helps separate data into groups
- Supervised Methods
 - SVM (Support Vector Machine)
 - Previous knowledge of which genes expected to cluster is used for training
 - Binary classifier uses 'feature space' and 'kernel function' to define an optimal 'hyperplane'
 - Also used for classification of samples - 'expression fingerprint' for disease classification

http://biit.cs.ut.ee/fungenes/
The Curse of Dimensionality
(graphs adapted from Parsons et al. KDD Explorations 2004)

- Data in only one dimension is relatively packed
- Adding a dimension "stretches" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless—due to equi-distance

Why Subspace Clustering?
(adapted from Parsons et al. SIGKDD Explorations 2004)

- Clusters may exist only in some subspaces
- Subspace-clustering: find clusters in all the subspaces

Density based clustering

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu (1996)

DBSCAN: Core, Border, and Noise Points
DBSCAN Algorithm

- **Eliminate noise points**

 - For all core points do:
 - If the core point has no cluster label then:
 - Set the current cluster label to 1.
 - Label the current core point with this cluster label.
 - Set the current cluster label to the current cluster label + 1.

- **Perform clustering on the remaining points**

 - For all points in the Eps-neighborhood, except the point itself do:
 - If the point does not have a cluster label then:
 - Label the point with the current cluster label.
 - Set the current cluster label to the current cluster label + 1.

DBSCAN: Core, Border and Noise Points

- **Original Points**
- **Point types:** core, border and noise

When DBSCAN Works Well

- **Original Points**
- **Clusters**

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

- **Original Points**

- Varying densities
- High-dimensional data

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor
Summary
• Cluster analysis groups objects based on their similarity and has wide applications
• Measure of similarity can be computed for various types of data
• Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
• Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
• There are still lots of research issues on cluster analysis

Summary: Goals of clustering
• Scalability
• Deal with different types of attributes
• Clusters of arbitrary shape
• Minimal expert knowledge on parameters
• Deal with noise
• Incremental and not dependent on order
• High dimensionality
• Constraints
• Interpretability and usability
• ...

Quality: What Is Good Clustering?
• A good clustering method will produce high quality clusters with
 – high intra-class similarity
 – low inter-class similarity
• The quality of a clustering result depends on both the similarity measure used by the method and its implementation
• The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

Measure the Quality of Clustering
• Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: \(d(i, j)\)
• There is a separate “quality” function that measures the “goodness” of a cluster.
• The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
• Weights should be associated with different variables based on applications and data semantics.
• It is hard to define “similar enough” or “good enough” — the answer is typically highly subjective.
Finding the modules

Public datasets for H.sapiens
- IntAct: Protein interactions (PPI), 18773 interactions
- IntAct: PPI via orthologs from IntAct, 6705 interactions
- MEM: gene expression similarity over 89 tumor datasets, 46286 interactions
- Transfac: gene regulation data, 3183 interactions

Finding the modules

Public datasets for H.sapiens
- IntAct: Protein interactions (PPI), 18773 interactions
- IntAct: PPI via orthologs from IntAct, 6705 interactions
- MEM: gene expression similarity over 89 tumor datasets, 46286 interactions
- Transfac: gene regulation data, 3183 interactions
Module evaluation

GO: Transforming growth factor beta signaling pe
- embryonic development, gastrulation
- KEGG: Cell cycle, cancer, WNT pathway
- GO: JAK-STAT cascade, Kinase inhibitor activity
- Insulin receptor signaling pathway
- GO: Transforming growth factor beta signaling pathway
 - embryonic development, gastrulation
 - KEGG: Type II diabetes mellitus

Jüri Reimand: GraphWeb.
Genome Informatics, CSHL. Nov 1 2007

MCL clustering algorithm

- Markov (Chain Monte Carlo) Clustering
 - http://www.micans.org/mcl/
- Random walks according to edge weights
- Follow the different paths according to their probability
- Regions that are traversed “often” form clusters

MCL clustering algorithm

http://www.micans.org/mcl/intro.html

With this, the MCL algorithm can be written as

1. Initialize the graph
2. Perform random walks
3. Update the matrix
4. Repeat until convergence

Visualization and human computation “brain exercise”

Perception of/and experience

- Simple example of 5 entities (persons) and their relationships
- Who would you prefer to be?
- Who wouldn’t you want to be?
- And what if the relationship means “company A sells to company B”?
- What if relationship means “love”?
Outline

- **Micro-tutorial on Seriation:**
 - What is it? Who cares?
 - Clustering versus seriation;
 - Related work and background
 - Recent advances
- Similarity ("goodness") measures
- Where to go from here?
 - The Encyclopedia (Gallery, DB) of Structures?

Definition: Seriation

- **Seriation** is an exploratory combinatorial data analysis technique to reorder objects into a sequence along a one-dimensional continuum so that it best reveals regularity and patterning among the whole series.

A simple example with 11 objects

“Raw data”

Seriation and Matrix Reordering

- Seriation is typically applied for matrix reordering (two-way one/two-mode seriation);
- Every matrix is two-way*, N x N matrix is one-mode and N x M matrix is two-mode.

```
COUNTRIES        ATTRIBUTES
1 0 0 1           1 0 0
1 1 1 1           1 1 1
1 0 1 1           1 0 1
0 0 1 1           0 0 1
```

*Using Carroll-Arabie taxonomy of scaling methods and terminology of Tucker
Seriation and Matrix Reordering

Natural “ordering”

- Archaeological samples
 - Location 1: pottery, bones, spear
 - Location 2: pottery, copper, spear
 - Location 3: glass, copper
 - Location 4: steel, copper, pottery

- Each location should have a correct date
- Ordering – gives you a natural “timeline”

Seriation vs Clustering

- Example by Prof. Gilles Caraux (Permutmatrix software):
Can you see the pattern in data?

Related work

Seriation: who cares (nowadays)?

Recent advances

“Optimal leaf ordering (OLO)”

Did you see it?

• Niermann (2005) presented a GA approach for seriation in *The American Statistician*
• The History of the Cluster Heat Map (Wilkinson & Friendly, TAS, May 2009)

• Niermann (2005) presented a GA approach for seriation in *The American Statistician*
• The History of the Cluster Heat Map (Wilkinson & Friendly, TAS, May 2009)

• Niermann (2005) presented a GA approach for seriation in *The American Statistician*
• The History of the Cluster Heat Map (Wilkinson & Friendly, TAS, May 2009)
No name consensus

- Czekanowski diagram, Robinson matrix, Reorderable matrix, **Matrix reordering**, Matrix visualization, Matrix analysis, Matrix permutation, Permutable matrix, Array-based clustering, Block clustering, Biclustering (two(n)-mode clustering), Co-clustering, Product Flow Analysis, Group Technology, Part/Machine group formation, Manufacturing cell formation, Cellular manufacturing, **Seriation**, cleaned up differential shading of the similarity matrix, Matrix tile analysis, Rearrangement clustering, Generalized Association Plots (GAP), non-destructive data analysis, optimal order of matrices, Optimal leaf ordering, band form, banded structure; **Matrice ordonnable, Differenzaldiagnose, метод групповой технологии и организации группового производства**;

Similarity (“goodness”) measures

- McCormick et al. (1969, 1972):
 \[\text{argmin}_{\Phi} \sum_{i,j=1}^{n} a_{i,j} | d_{i,j} - \Phi_{i,j} + \Phi_{i,j-1} + \Phi_{i-1,j} + \Phi_{i-1,j-1} | \]

- Cumulative Hamming (Verin/Grishin,1986):
 \[\text{argmin}_{\Phi} \left(\sum_{i,j=1}^{n} d(x_{i,j},x_{i,j+1}) \right)^{-1} \times \left(\sum_{i,j=1}^{n} d(x_{i,j},x_{i+1,j}) \right)^{-1} \]

- Can be generalized and written compactly:
 \[\text{argmin}_{\Phi} L(\Pi\Phi) \]

I'm not buying that matrix representation is better than graph layout!

- Such discussion is older than us (Forsyth-Katz vs Moreno 1940s, recent user studies by Fekete,Henry,Ghoniem)
- "Clique", clusters, hubs, chains harder to detect in graphs with different entity types ("bipartite" and n-partite graphs)
- Hard to read if n gets bigger
- With graphs we encode only positive connections (existing relationships)

Seriation and Matrix Reordering

Seriation: a unified view

- unidimensional seriation
- block diagonal seriation
- block checkboard seriation
- Pareto seriation

4 Important questions

- I’m not buying that **matrix representation** is better than **graph layout**! (actually, it’s worse!!!)
- How is it different from **correlation**?
 (why can’t I just calculate corr coef for everything and sort as a list?)
- How is it different from **clustering**?
 (there’s lots of tools for clustering – Why can’t I just pick one of those?)
- What is the added value to InfoVis community from this approach?
How is it different from correlation?
(why can’t I just calculate corr coef for everything and sort as a list?)

- We don’t know the two attributes!
- We want to find multiple correlations (corr between >> more than two attr.) (2n list)
- We don’t always know what “level” of correlation provides the most information (highest corr != “best” corr)
- We are interested in chained corr
- Not to mention that there are some fundamental issues already with std corr:

How is it different from clustering?
(there’s lots of tools for clustering – Why can’t I just pick one of those?)

- Algorithmic problem: k # of clusters unknown
- Goal of clustering is to assign similar entities to groups, not to identify or describe similarities/affinities between entities!
- Clustering of attributes aka~ factor analysis
- It is not a clustering’s “fault”, because if the goal is not to find all similarities between entities and between clusters, it would be inefficient extra work for CPU/GPU

What is the added value to InfoVis community from this approach?

- Important to distinguish that learning to see different structural patterns from the overview is not just moving along the learning curve to get the technique, but to accumulate knowledge from all your previous works.
- Not just learning how to read the display, but how to connect and combine with past experience, background information, memories from previous investigations, not on entity level, but @ abstract metalevel
Conformity analysis with structured query language

Innar Liiv, Rein Kuusik, Leo Võhandu
Tallinn Univ. of Technology, ESTONIA
Contact: innar.liiv@ttu.ee

Outline
- What is conformity?
- Conformity analysis, scale of conformity?
- Numerical example;
- CA and data mining paradigm?
- Implementation with SQL;
- Conclusions and future work.

What is conformity?
- Conformity can be defined as adjusting one’s behavior or thinking to match those of other people or a group standard.
- CRM motivation & challenge:
 When people are free to do as they please, they usually imitate each other.

 Eric Hoffer

Conformity analysis
- Aligns the objects and attributes according to nearest-neighbour similarity and therefore establishes a scale of typicality in the data.
- Describes the transformation between the classes and clusters;
- Goal: data "morphing"
 * Morphing is a special effect in motion pictures and animations that changes (or morphs) one image into another through a seamless transition.

Numerical example
<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O_3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O_4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O_5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

f_1 2 4 2 4 4
f_0 4 2 4 2 2

Numerical example (cont.)
<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>f_1</th>
<th>f_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O_3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O_4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>O_5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

conformity
12 20 16 20 18
Numerical example (result)

<table>
<thead>
<tr>
<th></th>
<th>a_2</th>
<th>a_4</th>
<th>a_3</th>
<th>a_3</th>
<th>a_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>O_4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O_5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>O_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Conformity: 20 20 18 16 12

CA and data mining paradigm

- Outlier research;
- Relations and connections mostly with unsupervised approach:
 - Self-organization & Kohonen;
 - Association rules;
 - Clustering;
- Value(knowledge)-adding also to supervised learning approaches (classification).

Implementation with SQL

Advantages:
- Eliminates data movement, speeds data mining, simplifies model deployment, and delivers security and scalability.
- **Motivation:** to delegate all the enumeration and calculation steps to database system;
- Possible to exploit the underlying SQL parallelization.
- **Unoptimized → compatible** with MySQL 4.1.1, MS-SQL 2000, MS Access 2000, PostgreSQL 8.1.0, Oracle 10g.

Conclusions

- Conformity analysis: an efficient data-driven exploratory data analysis method;
- Enables to gain insight to the object (customer) behaviour real-time as the data changes;
- Instant deployment;
- Future work: optimization (length+speed).

Thank you for your attention!

Questions?

Contact: innar.liiv@ttu.ee
School violence

1) Bottleneck machine (in manufacturing)
2) Excellent position (in supply chain)
3) Miserable love (Psychology)

THANK YOU