Where are we?

<table>
<thead>
<tr>
<th>Notation</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class diagrams</td>
<td>Domain & application modeling</td>
</tr>
<tr>
<td>Use case diagrams/use cases</td>
<td>User-system interaction modeling</td>
</tr>
<tr>
<td>Sequence diagrams</td>
<td>User-system & system-system interaction modeling</td>
</tr>
<tr>
<td>Statecharts</td>
<td>Object behavior modeling</td>
</tr>
<tr>
<td>TLA+</td>
<td>Concurrent systems specification</td>
</tr>
</tbody>
</table>
State Machine

- A machine whose output behavior is determined both by the current input, and by some past history of its inputs
- Characterized by a **state**, which represents this past experience

If the phone is ON, then pushing this button will turn it off

If the phone is OFF, then pushing this button will turn it on
State Machine

Initial state (entry)

Phone is off

Phone is on

State

Transition (event “off”)

(initial)
Another example
Exercise 1

- Model the behavior of a scholarship application as a state machine
 - The student creates the application (draft)
 - The student can withdraw it (withdrawn)
 - Or the student can submit it (submitted)
 - It can still be withdrawn!
 - A secretary can cancel it because of eligibility rules (cancelled)
 - A committee accepts or rejects it (accepted or rejected)
 - If accepted the student can still withdraw it
 - If accepted, the accounting department disburses it (disbursed)
Actions on a State Machine

- State changes can induce side-effect actions

Mealy automaton
Actions on states

Moore automaton
Actions on transitions
One type of action is the assignment an expression to a variable

$c := c + 1$
Exercise 2

- Consider the state machine of an answering machine
 - Add the following events and actions: Call detected, Answer call, Play announcement, Record message, Caller hangs up, Announcement complete

- Revise the state machine so that the machine answers after five rings.
Statecharts

- The statecharts notation extend state machines with:
 - Various types of events and conditions
 - State hierarchy (statecharts inside statecharts)
 - Concurrency
 - Other “cool” features we’ll see…
- Part of UML
- Heavily used in SysML
Statecharts: The basics

A state model consists of one or more state diagrams

State1

\[\text{do/ activity event / effect} \]

event [condition] / effect

State2

...
A state is an abstraction of attribute values and links of a particular object

- An object has a finite number of possible states
- It can only be in one state at a time
Events

- An event is a “stimulus” that can trigger a state change of an object

- Kinds of events
 - Call event
 - Signal event
 - Change event
 - Time event
1. Call events

- A call event represents the an operation invokation
2. Signal Event

- A signal is an explicit one-way transmission of information from one object to another
 - A signal event is asynchronous
 - A call event is a two-way synchronous communication
- Signal events can be specified as UML classes

<table>
<thead>
<tr>
<th>«signal» FlightDeparture</th>
</tr>
</thead>
<tbody>
<tr>
<td>airline</td>
</tr>
<tr>
<td>flightNumber</td>
</tr>
<tr>
<td>city</td>
</tr>
<tr>
<td>date</td>
</tr>
<tr>
<td>time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>«signal» MouseButtonPushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>button</td>
</tr>
<tr>
<td>location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>«signal» SelectionChanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>targetControl</td>
</tr>
<tr>
<td>selectionIndex</td>
</tr>
</tbody>
</table>
3. Change events

- A change event is an event that is caused by the satisfaction of a boolean expression
 - UML specifies that the expression is continually tested
 - An implementation would not continuously check the expression, but at least often

Examples:
- when (room temperature < heating set point)
- when (room temperature > cooling set point)
- when (battery power < lower limit)
- when (tire pressure < minimum pressure)
4. Time event

- A time event is an event that is caused by the occurrence of an absolute time or the elapse of a time interval

Examples absolute time:
 - at (January 1, 2010)
 - at (20:00)

Examples time interval:
 - after (10 seconds)
 - after (10 days)
Guards

- A guard (boolean expression) can be used to add constraints in the firing of a transition
- Useful when more than one transition can be selected at a given time
Transition effects and do-actions

- A transition’s action can be an assignment or an operation invocation

- UML statecharts can also specify actions attached to state nodes (as for Moore automata)
 - A “do-activity” is an activity that should execute continuously for an extended time
Exercise 3: complete this statechart

An order cannot be placed unless the cart is not empty.
Entry/Exit Actions

An entry activity is performed whenever the state is entered.

Whenever the state is exited, by any outgoing transition, the exit activity is performed first.
Example: Flashing Light Bulb
(to be developed in the practice session)
Order of actions

After first “off” event
- print(“exiting”)
- print(“to off”)
- turnLightOff()

After second “off” event
- print(“exiting”)
- print(“needless”)
- turnLightOff()
Event handling and self-loops

In this case “off” event is handled bypassing both the entry and exit activities

- print(“skipped”)
Common Sources of Errors

- Drawing transitions without an event
 - Try to avoid them, they lead to frequent errors when you don’t know 100% what you’re doing.

- Mixing up events with conditions
 - Events “happen” at some point in time. The state machine remains in a state till an event happens.
 - Conditions are true or are false at every point in time
 - Examples:
 - `[numPages <= 2]` --- condition
 - `when(numPages > 2)` --- event
Readings & Resources

Material covered in lectures:

- This week: Blaha & Rumbaugh, Chapter 5
- Next week: Blaha & Rumbaugh, Chapter 6

For the practice sessions:

- Yakindu StateCharts Tool (SCT)
 - http://statecharts.org/download.html
Exercise 4 (next week)

- Prepare the state diagram for a washing machine
 - On / Off button
 - Start button (but no stop button)
 - Feedback is given on the current stage (soaking, rinsing, draining, drying)
- Three washing programs
 - Regular
 - Delicate (no soaking)
 - Super delicate (no soaking, no drying)
- Off can be clicked only before starting, or after finishing
A simple digital watch has a display and two buttons to set it, the A button and the B button. The watch has two modes of operation, display time and set time. In the display time mode, the watch displays hours and minutes, separated by a flashing colon.

The set time mode has two submodes, set hours and set minutes. The A button selects modes. Each time it is pressed, the mode advances in the sequences: display, set hours, set minutes, display, etc. Within the submodes, the B button advances the hours or minutes once each time it is pressed. Buttons must be released before they can generate another event. Prepare a state diagram of the watch.