Advanced state modeling

Marlon Dumas
Institute of Computer Science
How does a washing machine work?

- On/off (power) button.
- Start button (no stop button!)
- Light indicates current stage
 - soaking, rinsing, draining, drying
- Three washing plans that can be changes using a “mode” button:
 - Regular
 - Delicate (no soaking)
 - Super delicate (no soaking, no drying)
- Off can be pushed only:
 - before starting
 - or after finishing
Statechart for the washing machine

- **off**
 - power
 - mode[plan=delicate]/plan = super delicate
 - mode[plan=regular]/plan = delicate
- **idle**
 - start[plan=delicate or plan=super delicate]
 - mode[plan=delicate]/plan = regular
- **soak**
 - do: light(soak)
 - do: pump(in)
 - after (30)
- **rinse**
 - do: light(rinse)
 - do: stir()
 - after (30 min)
- **drain**
 - do: light(drain)
 - do: pump(out)
 - after (5 min)
 - [plan<>super delicate]
- **dry**
 - do: light(dry)
 - do: stir()
State modeling -- Marlon Dumas

What if the “power” button can be clicked at anytime?

What if we want to come back to the same state we left?
State explosion

- If we have “n” classes with “m” (boolean) attributes each (let’s assume that all classes have the same number of attributes)
- Possible states of the whole system = 2^{nm}
Abstraction in Statecharts

Factor out common behavior

Remember history

Segregate independent behavior

Composite States

History pseudo-states

Orthogonal/Parallel States

© Eran Torch, Technion
The transition can be fired from any internal state.
Exercise 1

- Group “FlashOn” and “FlashOff” states into a composite state “Flashing”
History pseudo-state

- Return to a previously visited hierarchical state
- Shallow history: just the current level

- Deep history: includes all nested states

- Sometimes it is useful to clear history:
 - clear-history(state) clh(state)
 - clear-history(state*) clh(state*)
Back to the washing machine...

State modeling -- Marlon Dumas
Washing machine with “history”

State modeling -- Marlon Dumas
Shallow vs. Deep history
Note on transition precedence

- Two or more transitions may have the same event trigger
 - inner transition takes precedence
 - if no transition is triggered, event is discarded
Order of activities in nested models

- Same approach as for the simple case

Execution sequence:

exS11 \rightarrow exS1 \rightarrow actE \rightarrow enS2 \rightarrow initS2 \rightarrow enS21
Exercise 2

- Fix and simplify this state machine
Independent behavior

- Multiple simultaneous perspectives on the same entity

Diagram:

- Age:
 - child
 - adult
 - retiree

- FinancialStatus:
 - poor
 - rich
Parallelism: States with orthogonal regions

- Combine multiple simultaneous descriptions
Parallelism: States with orthogonal regions

- All mutually orthogonal regions detect the same events and respond to them “simultaneously”
- usually reduces to interleaving of some kind
“Flat” vs. Parallel State Machines

- Every parallel machine can be transformed into a sequential machine:

With Orthogonal Regions

Without Orthogonal Regions
Exercise 3:
Rewrite this without parallel regions
Synchronization

- Orthogonal regions/states can be synchronized via transition guards

![Diagram showing synchronization]

This transition can only be fired when A.C is in M state
Class aggregation and their state diagrams

- A state diagram is a collection of state diagrams
 - Class aggregation will usually require to combine the state diagrams of all parts

- The whole can be thought as a set of orthogonal regions!
Readings & Resources

- Last week: Blaha & Rumbaugh, Chapter 5
- **This week:** Blaha & Rumbaugh, Chapter 6