Cryptography
(a short intro)

Dominique Unruh
University of Tartu
κρυπτός γράφειν

hidden writing
Secret codes

Encryption
What is Cryptography?

Communication in the presence of an adversary

• More than just encryption
• Protection of data integrity
• Communication with the adversary
Cryptography in History
Kama Sutra recommends...

The following are the arts to be studied, together with the Kama Sutra:

[...]

The art of understanding writing in cypher, and the writing of words in a peculiar way.

(Translation by Richard Burton)
Caesar Cipher

• Shift each letter by three places

CAESAR

FDHVDU

• Supposedly used by Julius Caesar
Scytale

Sparta... 2500 years ago...
Herodotus and the Slave Cipher

(5. century BC)
Invisible Ink

- Lemon juice as invisible ink

- After heating, ink becomes brown
The Kerckhoffs principle
Auguste Kerckhoffs

- “La cryptographie militaire”, Journal des sciences militaires, 1883
- “The system must not require secrecy, and it can fall into enemy’s hands without causing trouble”
Kerckhoffs Principle - Consequences

• Separation of cryptosystem and key

• System must stay secure even if only key is secret

• Design-principle for modern cryptography
The enemy knows the system.

Claude Shannon
Enigma

- German cipher machine from World War II
- 3-4 wheels (rotors) with electrical wires
- Rotor position determines the wire connections
- Key press → Lamp lights up, rotor rotate
• Rotor position = key
• Even after the British got an Enigma, immense work needed for breaking it
• Alan Turing’s team had >10000 helpers
• A success for the Kerkhoffs principle
Modern Cryptography
Information theory

• Shannon, “A mathematical theory of communication”, 1948
• Information as a mathematical object
• Security can be defined, analyzed, and proven!
One-time-pad

Message: 001110100100111100010
Key: 101011100101001011100
=Ciphertext: 100101000001110111110

Shannon: One-time-pad is provably secure!
Not practical:

• Long key
• May only be used once
• Useful auxiliary tool
Public-Key Cryptography

Whitfield Diffie

Martin Hellman

“New Directions in Cryptography”, 1976
Public Key Cryptography

Message \rightarrow Ciphertext \rightarrow Message

Public key

Secret key

Advantage: Public key may be published
Provable Security

1. Postulate complexity assumption
 - Example: Factoring large integers is hard

2. Develop cryptosystem

3. Security proof:
 - If cryptosystem is broken, complexity assumption was wrong
Why Complexity Assumptions

We can’t do better...

(State of the art: we can prove the hardness of almost nothing...)
More than just encryption
Millionaire’s Problem

I am the richest duck!

Who is richer?

I am the richest duck!

None wishes to reveal the size of his fortune

None trusts the other
Secure Auctions

Buyers

Sugar beet vendors

Offers

Production quantities

No-one wishes to reveal his prices

What shall the market price be?
Data-mining

Medical data

Medical data

Medical data

New Knowledge
Quantum Key Exchange

Alice and Bob notice attacks!
Quantum Position Verification

Speed of light

Position verified
Cryptography

More than encryption - Communication in the presence of the adversary

A fascinating topic, combining relevance and challenging research questions
Crypto Group - Our research

- Quantum cryptography
- Verification of security
- Constructing crypto protocols
- Privacy protocols: E-voting / datamining
- Applied security / attacks
How to study crypto

• Security lectures at bachelor’s level (e.g., applied crypto)
• Crypto more on master’s level (or end of bachelor)
• Get a background in math in time
• Info on theses/topics: http://crypto.cs.ut.ee/index.php/Teaching/Topics