DevOps – Lecture 11

DataOps

15 Nov 2022

Chinmaya Dehury

Chinmaya.Dehury@ut.ee
Where are we now?

1. SDLC + Why DevOps
2. DevOps Phases + Cloud Computing – Basics
3. VCS – GitLab
4. Containerization – Kubernetes
5. Microservices
6. Automation – Ansible
7. CI/CD – GitLab
8. Continuous Testing
9. Monitoring
10. Application Deployment Modeling

11. DataOps
12. DevOps + Serverless
13. Consultancy and Final Exam Discussion
Update/Clarification on grading

• Submission of at least **80% of all deliverables** (i.e. 9 out of 11 practice sessions) is a must-have condition to be able to attend final examination.

• If your total practice session score (from 11 labs):

 Total Practice Session score examples:

<table>
<thead>
<tr>
<th>Out of 110</th>
<th>Out of 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>102/110</td>
<td>46.3/50</td>
</tr>
<tr>
<td>114/110</td>
<td>51.8/50</td>
</tr>
<tr>
<td>90/110</td>
<td>40.9/50</td>
</tr>
</tbody>
</table>
OUTLINE

- Data-intensive application
- Data flows in data-intensive application
- Data-intensive application management, Challenges, participants
- What is DataOps?
- Benefits of DataOps
- DataOps participants
 - Data Analyst
 - Data Engineer
 - Data Scientist
- DataOps Dimensions
 - Total Quality Management (TQM)
 - Lean manufacturing
- Challenges of Data Analytics
- Key steps in DataOps Implementations
- DevOps and DataOps
- Tools in DataOps
We call an application data-intensive if the data is its primary challenge - the quantity of data, the complexity of data, or the speed at which it is changing.
Data-intensive application

• Some disciplines
 • Astronomy,
 • atmospheric science,
 • medicine,
 • genomics,
 • biologic,
 • Biogeochemistry
 • intelligent transportation systems
 • social network analysis
 • recommender systems
 • and many more
Data-intensive application

• Application involved in
 • Processing large volume of data
 • I/O operations

• Movement and manipulation of data.

• Data?
 • Text, Audio, Video...
 • Variety of data: Structure, Unstructured, semi-structures
 • Velocity of data: Batch data, stream data

• Data-intensive application mostly focuses on **Big data**
How data flows in data-intensive application?

The Data-pipeline

1. Data Sources
 - RDBMS
 - Social media
 - Sensors/IoT
 - Machines
 - ERP
 - Mobile devices

2. Data Capture
 - Batch ingest
 - Stream ingest

3. Data Storage
 - Data warehouse
 - Data Lake

4. Data Process/transform
 - Batch processing
 - Stream data
 - ML tools
 - Task Orchestration

5. Result Storage
 - Feature
 - Data catalog
 - Real-time store

6. Data Consumer
 - Report
 - ML APPs
 - IoT APPs
 - Analytics
 - BI
 - Alerts
 - Services

7. Data Product

TODO: What is the difference between DBMS and data warehouse???
What are different Operations?

So what are the possible operations in this pipeline?

• How you collect the data from different sources?
 • e.g. Crawling tweets, facebook posts, review data, from different websites
 • E.g. Getting data from thousands of Sensors

• Storage
 • external/internal storage service provider

• Preparing the data from analysis

• Data analytics job

• Designing the models

• Preparing the result for data consumer

• How to setup the right tool set?

• And many more….
Data-intensive application management

Hard to find the root cause for:
 • Application failure
 • Data pipeline missing SLAs
 • Huge Cloud cost
 • Problem can be on Code or on the cluster...etc.

Root cause could be somewhere:
 • Bad Data merging
 • Wrong container size
 • Data layout and file format
 • Machine degradation
 • Scheduling setting
 • Wrong network setting
 • Configuration setting
 • ...
Data-intensive application Challenges

Challenges

• Data demand in every fields
• Very high complexity of data pipeline
• Lack of experts
• Data team

Business outcomes due to above challenges:

• Slower delivery
• Too many defects
• High cost
• Poor customer satisfaction
Who are the participants?

So what are the possible operations in this pipeline?

- How you collect the data from different sources?
 - e.g. Crawling twitter, facebook post, review data, from different websites
 - Getting data from thousands of Sensors
- Storage
 - external/internal storage service provider
- Preparing the data from analysis
- Data analytics job
- Designing the models
- Preparing the result for data consumer
- How to setup the right tool set?
- And many more....

Possible list of Participants

- Data engineer
- Data scientists
- Data analyst
- Architects
- Developer
- Production team
- Monitoring
- Consumer
Can you deliver the product or extract the value out of data very quickly, with

- Such large pipeline
- So many potential complex problems
- So many stakeholders
DataOps
What is DataOps?

DataOps ➔ Data + Operations

“DataOps is a state of mind”

“It is about continuous improvement”

- Wayne Eckerson, President@Eckerson Group

“Data is a Collaborative data management practice focused on improving the communication, integration and automations of data flows between data manager and consumers across.”

- Gartner

“DataOps seeks to reduce the end-to-end cycle time of data analytics, from the origin of ideas to the literal creation of charts, graphs and models that create value.”

- DataOps Manifesto
What is DataOps?

“This uses technology to automate data delivery with appropriate level of security, quality and metadata to improve the use and value of data in a dynamic environment.”

- Gartner

Goal: to create analytics in the individual development environment, advance into production, receive feedback from users and then continuously improve through further iterations

- Data manifesto
Benefits of DataOps

• End-to-end efficiency and observability
• Real-time collaboration
• Faster product delivery
• Fewer data defects
• Greater code reuse

Business outcomes:
• Slower delivery Faster
• Too many defects lesser now
• High cost cheaper
• Poor customer satisfaction happy customer
Who are the DataOps participants?

So what are the possible operations in this pipeline?

• How you collect the data from different sources?
 • e.g. Crawling twitter, facebook post, review data, from different websites
 • Getting data from thousands of Sensors
• Storage
 • external/ internal storage service provider
• Preparing the data from analysis
• Data analytics job
• Designing the models
• Preparing the result for data consumer
• How to setup the right tool set?
• And many more….

Possible list of Participants

Data Team
• Data engineer
• Data scientists
• Data analyst
• Architects
• Developer

Ops Team
• Production team
• Monitoring
• Consumer
Who are the DataOps participants?

Data Analyst
- typically gathers data to identify trends
- performing statistical analyses to help answer questions and solve problems
- make queries to relational databases
- may also clean data
- put data in a usable format
- discarding irrelevant or unusable information
- Handle missing data
- spend more time on routine analysis
- generates reports regularly
Who are the DataOps participants?

Data Engineer

• prepare data
• develop, constructs, tests & maintain complete architecture
• ability to create and integrate APIs
• Knowledge on data pipelining and performance optimization
• Deploy ML & statistical models
Who are the DataOps participants?

Data Scientist
- Involved with designing data modeling processes
- Focused on developing new tools and methods to extract the information
- Create algorithms
- Create predictive models
- May design the way data is stored, manipulated and analyzed
DataOps Dimensions

DataOps applies Agile + DevOps + Total Quality Management + Lean manufacturing in data-intensive application development and operation.

Agile
- Self-organizing teams
- Business engagement
- Short sprints
- Regular retrospective

Total Quality Management
- Continuous measurement
- Cont. monitoring
- Benchmarking
- Cont. improvement

DevOps
- Team-based development
- Version control
- CI/CD
- Test-drive development

Lean manufacturing
- Focus on customer
- Waste and inefficiency identification
- Simplify and standardize process
- Automation
Total Quality Management (TQM)

• An ongoing process of detecting and reducing or eliminating errors.
• Used to streamline supply chain management, improve customer service, and ensure that employees are trained.
• **Total employee involvement:** Aims to hold all parties involved in the production process accountable for the overall quality of the final product or service.
• TQM works to integrate all functions
 • such as the marketing department, the accounting department, the design team, etc.
Lean manufacturing

• In the late 1940s, **Toyota** put the foundations of Lean manufacturing.
• **Aimed** to reduce processes that don’t bring value to the end product.
• Significant improvements in **productivity, efficiency, cycle time, and cost-efficiency**
• E.g. : Restaurants prepare the dishes based on only customers’ order

https://kanbanize.com/lean-management/what-is-lean-management
Challenges of Data Analytics

1. Always changing Goal
 • Users/clients do not know all possible insights.
 • Never ending questions from the client.
 • Clients need everything in short time in this competitive market.

2. Data Lives in Silos
 • E.g. data related to orders, deliveries, returns, website page views, mobile app navigations, downloads, clicks, metrics, audio logs, social media and more
 • Different databases
 • Different platforms
 • Different APIs

3. Data formats are not Optimized
 • E.g. Some timestamp in millisecond and some in nanosecond precision
 • Recall practice session, where some student changed the data to convert the epoch time to human readable format.
Challenges of Data Analytics

4. Data Errors
 • It is hard to get data without any error either from internal or external sources
 • E.g. duplicate data, missing data, outlier data points.

5. Bad data
 • This may bring bad impression
 • Client may now blame the data-analytics team not the data itself

6. Never-ending maintenance of Data pipeline
 • New data source
 • Schema enhancement
 • New analytic job...

7. Manual Process Fatigue
 • Difficult to have end-to-end automated pipeline
 • Intermediate manual process may burnout the team
Key steps in DataOps Implementations

1. Add Data And Logic Tests
 • e.g. number of row after join or cross product operation
 • e.g. number of failed transaction
 • Continuously monitor for errors and anomalies

2. Use Of VCS
 • related tools e.g. data prep tool, reporting tool, visualization tools should be in VCS
 • scripts, source code, algorithms, html, configuration files, parameter files, containers and other files
 • heavy use of branching and merging

3. Use Of Multiple Environments
 • Local development environment
 • use of subset of data incase local environment doesn't have enough resource

4. Reuse & Containerize
 • Not only the code, but also the intermediate result should be shared among other members
 • Containerize the code as well

5. Parameterize Your Processing
 • Make the analytic algorithm flexible enough to take the variables in runtime
DevOps and DataOps

• Optimizing code builds and delivery is a part of data analytics’ job.
• DataOps borrows the methodology from DevOps.
 • Also from Agile development and Lean manufacturing
 • Data Team, IT team and the client work together efficiently and effectively
• Stakeholder
 • In DataOps, the main stakeholder is the data team (Data analyst, data engineer or data scientist)
 • One of the primary focuses is on building models and visualization
DevOps and DataOps: Similarities

• Agile development
 • Both extend Agile methodology
• Focus on delivering business value
• Continuous integration and continuous delivery (CI/CD)
• Automated testing and code promotion
• Reuse and automation
DevOps and DataOps: The differences

- **The human factor**: Divergent skillsets.
 - DataOps: focus on creating models and visual aids.
 - DevOps: Focus is on coding

- **The process**:

- **Outcome**:
 - DataOps: Focus is on data pipeline
 - DevOps: Focus is on software application

- **Orchestration**:
 - DataOps: Essential components are data pipeline and analytics development orchestration

- **Testing**:

- **Test data management**:

- **Tools**:

LTAT.06.015: DevOps - Lec 11 - DataOps 34
DevOps and DataOps

Development and Deployment Processes

DevOps Process
- Develop
- Build
- Test
- Deploy
- Run

DataOps Process
- Sandbox Management
- Develop
- Orchestrate
- Test
- Deploy
- Orchestrate
- Monitor

Src: https://dataopsmanifesto.org/en/
DevOps and DataOps

Development and Deployment Processes

This includes several tools, languages and vendors for data engineering, data science, BI, visualization and governance.

Access -> Transform -> Model -> Visualization -> Report

Here it is referring to automated testing, Monitoring and lean manufacturing.

Src: https://dataopsmanifesto.org/en/
DevOps and DataOps

Complexity in DataOps

1. Sandbox Management
 • An isolated environment
 • Specially for new feature
 • This is the developer’s environment with several tools, libraries

2. Test data management
DevOps and DataOps

Complexity in DataOps

1. Sandbox Management

2. Test data management
 - Copy of original data
 - May copy a subset of original data
 - Comes with security and licensing restrictions.

https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7
Tools in DataOps

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>slack</th>
<th>Jira</th>
<th>Trello</th>
<th>Microsoft Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>R</td>
<td>Apache Spark</td>
<td>Jupyter</td>
<td>Visual Studio Code</td>
</tr>
<tr>
<td>Deployment</td>
<td>kubernetes</td>
<td>Jenkins</td>
<td>Azure DevOps</td>
<td>Bash</td>
</tr>
<tr>
<td>Orchestration</td>
<td>Azure Automation</td>
<td>puppet</td>
<td>ANSIBLE</td>
<td>Airflow</td>
</tr>
<tr>
<td>Testing and Monitoring</td>
<td>Datadog</td>
<td>Azure Application Insights</td>
<td>Azure Log Analytics</td>
<td></td>
</tr>
</tbody>
</table>
Tools in DataOps

<table>
<thead>
<tr>
<th>Category</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Capture</td>
<td>SQL Server, Kafka, Azure Stream Analytics</td>
</tr>
<tr>
<td>Data Storage</td>
<td>S3, Azure Data Lake, Google BigQuery, Azure Cosmos DB</td>
</tr>
<tr>
<td>Data Integration</td>
<td>Airflow, SQL Server, Azure Data Factory</td>
</tr>
<tr>
<td>Data Governance</td>
<td>Apache Atlas, Informatica, Collibra</td>
</tr>
<tr>
<td>Data Analytics</td>
<td>Power BI, Databricks, Azure ML</td>
</tr>
</tbody>
</table>
Lab Sessions

Dataset:
- Particulate Matter (PM) dataset for Delhi, India
- Area spanning 559 square kms.
- PM data recorded over three months from November 2020 to January 2021
- Data Source: https://www.cse.iitd.ac.in/pollutiondata/
- Data Attributes:
 - uid
 - dateTime
 - deviceId
 - lat
 - long
 - pm1_0
 - pm2_5
 - pm10
Lab Sessions

Use case to implement in Practice session (This is a draft version)

InfluxDB: Data Source 1: Location 1: Pod: TA’s k8s Cluster

Data Preprocess: Combine and regroup according to Device Id: Pod: Student’s k8s cluster:

Data analytic 1: Calculate hourly, daily, and weekly avg. + Push data to different database: Pod: Student’s k8s cluster:

Data analytic 2: Calculate Air quality Index: Pod: Student’s k8s cluster:

Local Intermediate storage: InfluxDB: Pod: Student’s k8s cluster:

NFS Storage: dashboard files, datasource files Student’s K8s-controller VM

Grafana: Pod: Student’s k8s cluster:
Lab Sessions

Use case to implement in Practice session (This is a draft version)

Data Preprocess:
Combine and regroup according to Device Id:
Pod:
Student’s k8s cluster:

Data analytic 1:
Calculate hourly, daily, and weekly avg.
+ Push data to different database:
Pod:
Student’s k8s cluster:

Data analytic 2:
Calculate Air quality Index:
Pod:
Student’s k8s cluster:

Data analytic 3:
Students’ homework
Find average in morning, noon, evening, and night
Pod:
Student’s k8s cluster:

InfluxDB:
Data Source 1:
Location 1:
Pod:
TA’s k8s Cluster

InfluxDB:
Data Source 2:
Location 2:
Pod:
TA’s k8s Cluster

Local Intermediate storage:
InfluxDB:
Pod:
Student’s k8s cluster:

Grafana:
Pod:
Student’s k8s cluster:

NFS Storage:
dashboard files, datasource files
Student’s K8s-controller VM
References

- https://dkproduction.staging.wpengine.com/blog/
- https://www.5stoday.com/total-quality-management/
- https://www.cse.iitd.ac.in/pollutiondata/
- https://www.dataops.rocks/
- https://dataopsmanifesto.org/en/
- https://datakitchen.io/what-is-dataops/
- https://asq.org/quality-resources/total-quality-management
- https://kanbanize.com/lean-management/what-is-lean-management
Any Question?

THANK YOU