Data Science for Urban Mobility
LTAT.06.014
Lecture 1: Introduction
My current research focuses on Mobility Modelling and Analytics, Mobility Data mining, Mobile Phone Cellular Network data Analytics and Intelligent Transportation Systems (ITS).

ITS Lab research activities are covering four main directions:

- Mobility Analytics
- Advanced Travel Information Systems
- Advanced Driver Assistance Systems
- Vehicular Networking

Syllabus

• Lecturer: Amnir Hadachi
• Lab Assistant: Artjom Lind
• Course webpage: https://courses.cs.ut.ee/2021/DS4UM/spring
 • Lectures:
 • Wed. 10h15 -12h00
 • Live stream / Recording
 • Fri. 10h15-12h00
 • Live stream
Syllabus

- Two assignments (50%)
- Final exam (50%)
- Labs:
 - Lab sessions will be in format of practice and tutorials
 - Some of the lab session will include exercises that we will be solve during the session or for take home practice.
<table>
<thead>
<tr>
<th>Block</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Data Science & Big data</td>
</tr>
<tr>
<td>2</td>
<td>Databases and Data Preparation</td>
</tr>
<tr>
<td>3</td>
<td>Spatial Data</td>
</tr>
<tr>
<td>4</td>
<td>Bayesian Inference</td>
</tr>
<tr>
<td>5</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>6</td>
<td>Spatial Analysis</td>
</tr>
<tr>
<td>7</td>
<td>Data Visualization</td>
</tr>
<tr>
<td>8</td>
<td>Professional issues and ethics</td>
</tr>
</tbody>
</table>
Part 1:
“Data Science” and “Big Data”
Introduction

Modern History

Important dates for Data Science

2012
2011
1996
2008

"The Sexiest Job of the 21st century"

"Predicted 1.5M job demand for data scientist"

"Used as a Job title"

"Used in its current meaning"
Introduction

E-commerce

Data Science

Applications

Healthcare

Transport

Banking

Manufacturing

Finance
Introduction

Data Science Applications

Transport

OD-Matrix Analysis
Airline Pricing and arbitrage
Pothole Monitoring
Social review apps
Self-driving cars
Taxi services
Examples

Origin-Destination Analysis

• Objective: Estimating origin and destination of the actual routes taken by the drivers.

• Input data: Automatic Number Plate Recognition and Induction loop.

• DS role: Applying Data fusion and data science for recovering missing or corrupted data.

• Side-effect: tracking and identifying individuals trajectories.

Examples

Origin-Destination Analysis

• Objective: Depicting large scale of the population commuting

• Input data: Mobile network data

• DS role: Data enrichment and extracting the OD-matrix
Examples
Airline Pricing and arbitrage

• Objective: Dynamic pricing
• Input data: demand over time.
• DS role: isolate the affecting factors such as travel type (Business/Leisure), demographic, wealth of the customers.
• Advanced : building clients profile and target marketing.
Examples

Pothole Monitoring

- Objective: detecting pothole in asphalt pavement.
- Input data: images or social app
- DS role: decision support for classification and maintenance scheduling.
Examples
Social review apps

• Objective: Providing review and recommendation of public places and restaurants in a sociable manner.

• Input data: location and activity labels.

• DS role: building an understanding of the urban mobility and the motivation behind it.
Examples
Self-driving cars

• Objective: dependent on data
• Input data: different sensors from the embedded system in the car, sensors and infrastructure.
• DS role: making sense of this data.
Examples

Self-driving cars - NetCalib

- Objective: Auto-calibration of Lidar and Stereo Camera
- Input data: Lidar and Stereo Camera
Examples

Taxi services

• Objective: providing manual and self-dri
 driving taxi service where data is col
 lected about the passengers and their
 journeys.

• Input data: many...

• DS role: is to enhanced the existing
 system and providing a more cus
 tomised services. Building a
 service around the needs of the
 citizens, providing an understanding
 of the public demand for transport, or
 sell the data to insurance companies.
Terminology

Remark 1.1:
All these applications presented has something in common that makes them “Data Science” or “Big Data”, according to Mayer-Schonberger and Cukier that the fundamental changes in the scientific approaches is about three points:

- **Bigness**: The ability to analyse massive amount of data at once about a topic rather than sampling a smaller set.

- **Messiness**: The power of skipping cleaning, data preprocessing and structuring and execute algorithms directly on raw data.

- **Correlation**: discarding the quest for elusive causality and focusing on correlation.
Terminology

Definition 1.1: Data Science

Data Science is defined as an inter-disciplinary field that applies scientific methods, processes, algorithms, systems to discover and extract knowledge from structured or unstructured data.

NB: We emphasise that data science is about the use and re-use of data collected passively rather than via causal experiments used in regular "science".

Definition 1.1: Big Data

We say that we are dealing with Big Data the moment our traditional single computer processor is incapable of handling the data and there is a need for using parallel computation or distributed.
How to make your CV reflect that you are a data scientist?

Answer: In general the term itself is a fuzzy concept that can refer to many characteristics which can label it in a rough, overlapping and clusters of idea that can be listed as follows:
Data Scientist

Remark 1.1: Ethics

How the data collected to used and to which end? Where is the limit or the border line?
Data Scientist

Data Science General Workflow:

Data Collection → Exploration → Data Manipulation → Modelling → Validation → Reporting
Part 2: Introducing Python
Python Basics

- Core

```python
In [1]: print('Hello World')

You can also print digits

In [2]: print(2+4)

Defining a variable.

In [4]: x = 3

In [5]: print(x+1)

String in python.

In [6]: s = 'hello'+'world'

In [7]: print(s)

To see the type of variable.

In [8]: type(s)
```
Python Basics

• Lists

Lists

A list is about storing an order sequence of other variable and it is a type of variable.

In []: L=[1,2,3,'Kala',8.4,0.9,[7,3]]

In []: print(L)

Selecting a subset and creating a new list.

In []: L[0:4]

The same applies for strings.

In []: s='where is the dataset'

In []: s[1]

In []: s[0:2]

Remember that python counts "indexes" and the order starts at 0 not at 1.

Adding element in a list.

In []: L.append('Science')

In []: L.remove(3)
Python Basics

- Dictionaries

Dictionaries or also known as "Hash Tables" are another basic type which is generalizing the idea behind lists.

For example, we can represent persons names and their associated licence plates:

```
In []: d=dict()
In []: d['Jack Williams']='234 THG'
In []: d['Sandra Miller']='779 TLR'
```

They can be considered as a simple form of DB from a Data Science perspective. We will discover more about this later in other lectures.
Python Basics

• Control structure

Control Structures

Similarly to other programming languages python allows you to use loops and conditions.

In []:
```python
for i in range(0,8,4):
    print('Hello world'+str(i))
```

In []:
```python
x=1
while x<10:
    x+=1  # equivalent to x=x+1
    print('while'+str(x))
    if x==1:
        print('loop started and x is one')
    else:
        print('x is not one')
```
Python Basics

- Files

Files

For writing a file using python.

```python
In [ ]: f = open('myfilename.txt', 'w')

In [ ]: f.write('hello')

In [ ]: f.close()
```

For reading. (of course there is other way which we will see later)

```python
In [ ]: for line in open('myfilename.txt'):
    print(line)
```
Python Basics

• Functions

Functions

We can define a function as a self-contained piece of code that take an input and perform a task on it and give an output.

```python
In [ ]: def myfunction(x,y):  # x and y are my input
    result=x+y
    return result  # returning the output

a= 3
b= 4

z = myfunction(a,b)
print(z)
```

Python can be also used for object-oriented programming (OOP). This latter allows for complex data types such as classes to be defined with their functions.

when it is the case, the name of the function is appended to the name of the object.

```python
In [ ]: myobject.myfunction(x,y)

in other word this is equivalent to.

In [ ]: myfunction(myobject, x,y)
```
Python Basics

- Libraries
- Modules

The moment your code starts to be more than one page long it is a sign to start splitting into different files or what is called Modules in Python (or libraries / components in other programming languages).
Python Basics

• Libraries

• Mathematics

math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard. These functions cannot be used with complex numbers; use the functions of the same name from the `cmath` module if you require support for complex numbers. The distinction between functions which support complex numbers and those which don’t is made since most users do not want to learn quite as much mathematics as required to understand complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected complex number used as a parameter, so that the programmer can determine how and why it was generated in the first place.

Number-theoretic and representation functions

`math.fsum(iterable)`

Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums:

```python
>>> a = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
>>> a
[1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
```

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding mode is half–even. On some non–Windows builds, the underlying C library uses extended precision addition and may occasionally double–round an intermediate sum causing it to be off in its least significant bit.

Power and logarithmic functions

`math.exp(x)`

Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the subtraction in `exp(x) - 1` can result in a significant loss of precision; the `expm1()` function provides a way to compute this quantity to full precision:

```
>>> from math import exp, expm1
>>> exp(1e-5) - 1  # gives result accurate to 11 places
1.000005000056649e-05
>>> expm1(1e-5)    # result accurate to full precision
1.00000500000000003668e-05
```
Python Basics

• Libraries
• Plotting
Python Basics

• Libraries

• Data Frames
Most common problem are related to data manipulation or glitches into data itself.
Additional Material
Please refer to Jupyter Notebook in the course webpage.

Python For Data Science - Initiation.ipynb

1. Initiation to Python for Data Science

This section of our course will be about initiation to python with a focus on data science. Usually, this practice will help you learn and acquire the fundamental knowledge to manipulate data. However, I suggest strengthening your experience with python by practicing more following the course webpage (https://courses.eu.edu/e2021/DSII/Minerva/Week1/topic1.html) or you can refer to different sources such as the library, internet, with the guidance of Mr. google, me or assistant of this course. We should not forget that this is a master level course, and this class will be about "figure it out," not a "tell and listen" class.

In our first practice, we will try to dive and get our hands dirty. Therefore, we start by getting the data that we will work with.

1.1 Getting the data

This site provides us with public data about transport accidents in the UK. For example, we will download and work with Road Safety Data Accidents 2018. (the file can be downloaded also from the lecture Materials)

You can also use your terminal if you want and use the following command:

```bash
$ unzip dftRoadSafetyData_Accidents_2018.csv
```

After unzipping the file you will find a csv file that we will use. In case you want to have a quick look into the data from the terminal use:

```bash
$ less Accidents_2018.csv
```

The command will also allow you to see the header and its attributes. Besides, be aware that if you try to open it with a text editor, the editor may run slow or crash since the file size is enormous.

```
Out[9]:
<table>
<thead>
<tr>
<th>Accident_Index</th>
<th>Location_Easting_OSGR</th>
<th>Location_Northing_OSGR</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Police_Force</th>
<th>Accident_Severity</th>
<th>Number_of_Vehicles</th>
<th>Number_of_Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20180103020781</td>
<td>201230.00</td>
<td>-1.193737</td>
<td>51.524037</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20180103020783</td>
<td>34020.00</td>
<td>0.044171</td>
<td>51.530801</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20180103020784</td>
<td>301100.00</td>
<td>-1.193414</td>
<td>51.529746</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
```

In [84]: # Nice and easy

```bash
Tab.hist(bins=100)
```