Cloud Computing – Lecture 8

MapReduce Algorithms

Pelle Jakovits

Satish Srirama

Some material adapted from slides by Jimmy Lin, Web-Scale Information Processing Applications course, University of Waterloo (licensed under Creation Commons Attribution 3.0 License)
Outline

• Recap of the MapReduce model
• Designing MapReduce algorithms
• Example MapReduce algorithms
• Data Synchronization issues
• Additional notes on MapReduce jobs
MapReduce model

• Programmers specify Map and Reduce functions:
 • **map** \((k, v) \rightarrow (k', v')\)*
 • Applies a user defined function on every input record
 • Values with the same key are grouped together before Reduce phase
 • **reduce** \((k', [v']) \rightarrow (k'', v'')\)*
 • Applies a user defined aggregation function on the list of values

• The execution framework handles everything else!

• Users have opportunity to also define:
 – **Partitioner** - Controls how keys are partitioned between reducers
 • **partition** \((k, \text{nr. of partitions}) \rightarrow \text{partition_id}\) for \(k\)
 – **Combiner** - Mini-reducer applied at the end of the map phase
 • **combine** \((k', [v']) \rightarrow (k'', v'')\)*
Designing MapReduce algorithms

• General goal of a MapReduce algorithm:
 – How to produce desired **Output** from the **Input data**?

• To define a MapReduce algorithm, we need to define:

 1. **Map Function**
 • What is **Map Input (Key, Value)** pair
 • What is **Map Output (Key, Value)** pair
 • **Map Function**: **Input (Key, Value)** \(\rightarrow\) **Output (Key, Value)**

 2. **Reduce Function**
 • What is Reduce **Input (Key, [Value])** pair
 • What is Reduce **Output (Key, Value)** pair
 • **Reduce Function**: **Input (Key, [Value])** \(\rightarrow\) **Output (Key, Value)**

Let's look at a few Example MapReduce algorithms
MapReduce Examples

• Counting URL Access Frequency
• Distributed Grep
• Distributed Sort
• Inverted Index
• Conditional Probabilities
Counting URL Access Frequency

• Process web access logs to count how often each URL was visited
• Input is a set of log files
• Resulting MapReduce algorithm is very similar to WordCount
MapReduce URL Access Frequency

• **Input:** (LineOffset, Line)
• **Output:** (URL, count)
• **Map function**
 – Processes one log record at a time
 – Emit (URL, 1) if an URL appears in log record
• **Reduce function**
 – Sum together all values
 – Emit (URL, total_count) pair
Distributed Grep

• Distributed version of the Linux command line Grep command
• Input is a set of text files
• Find all rows in a set of text files that contain a supplied regular expression
MapReduce Distributed Grep

- **Input**: (LineOffset, Line)
- **Output**: (LineOffset, Line)
- **Map function**
 - Emits a line **ONLY** if it matches the supplied regular expression
- **Reduce function**
 - Identity function
 - Emits all input data as (Key, Value) pairs without modifications
MapReduce Algorithm Design Process

1. Structure of the input data \Rightarrow Defines Job Input (Key, Value)
2. Desired result \Rightarrow Defines Job Output (Key'', Value'')
3. If the desired result can be computed without shuffling data:
 – Map Function: Job Input (Key, Value) \Rightarrow Job Output (Key'', Value'')
 – Reduce Function: Use Identity function!
4. If data needs to be shuffled:
 – Map Function:
 • How should data be grouped \Rightarrow Defines Map Output Key'
 • What values are needed in Reduce task \Rightarrow Defines Map Output Value'
 • Function: Job Input (Key, Value) \Rightarrow Map Output (Key’, Value’)
 – Reduce Function:
 • Input: Based on Map Output: (Key’, [Value’])
 • Function: Reduce Input (Key’, [Value’]) \Rightarrow Job Output (Key’’, Value’’)

Lets apply this process at example MapReduce algorithms!
Inverted Index Algorithm

• Generate a **Word -> File** index for each word in the input dataset

• Input is a set of text files

```
Page A
This page contains so much of text

Page B
This page too contains some text

Output
This : A, B
page : A, B
too : B
contains : A, B
so : A
much : A
of : A
text : A, B
some : B
```
MapReduce Inverted Index

- **Input:** Set of text files
- **Output:** For each word, return a list of files it appeared in

Map Function
- **Input:** (LineOffset, Line)
- **Function:** Extract words from the line of text.
- **Output:** (word, fileName)

Reduce Function
- **Input:** (word, [fileName])
- **Function:** Concatenate list of file names into a single string
- **Output:** (word, “[fileName]“)
Inverted Index: Data Flow

A map output

This : A
page : A
contains : A
so : A
much : A
of : A
text : A

Reduced output

This : A, B
page : A, B
too : B
contains : A, B
so : A
much : A
of : A
text : A, B
some : B

B map output

This : B
page : B
too : B
too : B
contains : B
some : B
text : B

Page A

This page contains so much of text

Page B

This page too contains some text
Inverted Index MapReduce pseudocode

```java
map(LineOffset, Line, context):
    pageName = context.getInputSplitFileName()
    for word in Line:
        emit(word, pageName)

reduce(word, values):
    pageList = []
    for pageName in values:
        pageList.add(pageName)
    emit(word, str(set(pageList)))
```
Distributed Global Sort

• Task is to sort a very large list of numerical values
• Each value is in a separate line inside a text file
• **Input:** A set of text files
• **Output:** values in a globally sorted order in the output files

• Often used as a benchmark to measure the raw throughput of the MapReduce cluster
Sort: The Trick

• Take advantage of Reducer properties:
 – (Key, Value) pairs from mappers are sent to a particular reducer based on Partition(key) function
 – (Key, [Value]) pairs are processed in ascending order by key

• Change the Partition function
 – Must use a partition function such that:

 IF \[K1 < K2 \]
 THEN \[\text{Partition}(K1) \leq \text{Partition}(K2) \]
Distributed Sort algorithm

• Map Function
 – Input: (LineOffset, Line/Number)
 – Function: Move the value into the Key
 – Output: (Number, _)

• Reduce Function
 – Input: (Number, [_])
 – Function: Identity Reducer
 – Output: (Number, _)

(Number, _) is emitted in Reduce for each _
Distributed Sort Data Flow

File A:
- 023567
- 911234
- 278689
- 867867
- 232245
- 145663

A map output:
- (023567, '')
- (911234, '')
- (278689, '')
- (867867, '')
- (232245, '')
- (145663, '')

Reducer 0 output:
- (023567, '')
- (035567, '')
- (145663, '')
- (195677, '')

File B:
- 385566
- 888888
- 952442
- 332432
- 195677
- 035567

B map output:
- (385566, '')
- (888888, '')
- (952442, '')
- (332432, '')
- (195677, '')
- (035567, '')

Reducer 1 output:
- (232245, '')
- (278689, '')
- (332432, '')
- (385566, '')

Reducer 4 output:
- (867867, '')
- (888888, '')
- (911234, '')
- (952442, '')
Let's focus on a bit more complex problems
Conditional Probabilities

• For each word A and B in the dataset:
 – What is the chance of word B occurring in a sentence that contains A.

• We can compute conditional probabilities from word counts:

\[P(B|A) = \frac{\text{count}(A,B)}{\text{count}(A)} = \frac{\text{count}(A,B)}{\sum_{B'} \text{count}(A,B')} \]

• How do we compute this with MapReduce?
 – Can use WordCount to compute count(A)
 – How to compute count(A,B)?
 – How to gather count(A,B) and count(A) values together to compute division?
Term co-occurrence matrix

• We first need to compute count(A, B) for each term A and B
• Term co-occurrence matrix for a text collection
 – $M = N \times N$ matrix ($N =$ vocabulary size)
 – M_{ij}: number of times i and j co-occur in some context (let’s say context = sentence)

• How large is the resulting matrix?
• How many elements do we need to count?
• Leads us to Large Counting problems

30.03.2020
21/39
Large Counting Problems

• Term co-occurrence matrix for a text collection
 => specific instance of a large counting problem
 – A large event space (number of words)
 – A large number of events (the number of sentences)

• Basic approach
 – Mappers generate partial counts
 • Map output is larger than input -> Data “explosion”
 – Reducers aggregate partial counts into full counts
 • Huge amount of tiny operations

How do we aggregate partial counts efficiently?
First approach: “Pairs”

- WordCount-like approach
- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit \((a, b) \rightarrow \text{count}\)
-Reducers sums up counts associated with these pairs
- Need to use combiners!
“Pairs” Analysis

• Advantages
 – Easy to implement
 – Easy to understand

• Disadvantages
 – Lots of pairs to sort and shuffle around
 – Too many tiny messages to be synchronized
Second approach: “Stripes”

• Idea: group together pairs into an associative array

\[(a, b) \rightarrow 1\]
\[(a, c) \rightarrow 2\]
\[(a, d) \rightarrow 5\]
\[(a, e) \rightarrow 3\]
\[(a, f) \rightarrow 2\]

\[a \rightarrow \{ \, b: 1, \, c: 2, \, d: 5, \, e: 3, \, f: 2 \, \}\]

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For each term, emit \(a \rightarrow \{ \, b: \text{count}_b, \, c: \text{count}_c, \, d: \text{count}_d \, \ldots \, \}\)

• Reducers perform element-wise sum of associative arrays

\[
\begin{align*}
 a \rightarrow \{ \, b: 1, \, d: 5, \, e: 3 \, \} \\
 + a \rightarrow \{ \, b: 1, \, c: 2, \, d: 2, \, f: 2 \, \} \\
 a \rightarrow \{ \, b: 2, \, c: 2, \, d: 7, \, e: 3, \, f: 2 \, \}
\end{align*}
\]
“Stripes” Analysis

• Advantages
 – Far less sorting and shuffling of key-value pairs
 – Can make better use of combiners

• Disadvantages
 – More difficult to implement
 – Underlying object is more heavyweight
 – Fundamental limitation in terms of size of event space
Conditional Probabilities

- For each word A and B in the dataset:
 - What is the chance of word B occurring in a sentence that contains A.

\[
P(B|A) = \frac{\text{count}(A,B)}{\text{count}(A)} = \frac{\text{count}(A,B)}{\sum_{B'} \text{count}(A,B')}
\]

- We have now computed count(A,B) values using MapReduce
- How do we compute \(\text{count}(A,B) / \text{count}(A) \)?
 - How do we solve dependencies between separately computed counts?
 - How to make sure \(\text{count} (A) \) is available for every \(\text{count} (A,B') \) in MR
Managing Dependencies in Data

• Remember, Mappers run in isolation
• We can't control:
 – The order in which mappers run
 – On which nodes the mappers run
 – When each mapper finishes
• Available tools for synchronization:
 – Ability to hold state in reducer across multiple key-value pairs
 – Sorting function for keys – to control the order of data
 – Partitioners - to control which data/keys are together
 – Broadcasting data to all Map or Reduce task
 – Cleverly-constructed data structures
P(B|A): “Pairs”

- Co-occurrence matrix already gives us: count(A, B)
- Need to also compute count(A) and count(A,B)/count(A)

(a, _) → 23
Reducer holds this value in memory

(a, b₁) → 3
(a, b₁) → 3 / count(a)
(a, b₁) → 3 / 23
(a, b₂) → 12
(a, b₂) → 12 / count(a)
(a, b₂) → 12 / 23
(a, b₃) → 7
(a, b₃) → 7 / count(a)
(a, b₃) → 7 / 23
(a, b₄) → 1
(a, b₄) → 1 / count(a)
(a, b₄) → 1 / 23

- How can we compute count(a) without changing how the data is grouped?
 - Must also emit an extra (a, _) for every bᵢ in mapper
 - Force all (a, _), (a, bᵢ) to be sent to same reducer using Partitioner
 - Must make sure (a, _) comes first (define sort order)
P(B|A): “Stripes”

• If we use the Stripes approach, we have associative arrays for each term a:

\[a \rightarrow \{ b_1 : 3, b_2 : 12, b_3 : 7, b_4 : 1, \ldots \} \]

• Then computing \(\text{count}(a) \) is easy!
 – No synchronization is required!
 – We can directly compute \(\text{count}(A, B) / \text{count}(A) \) at the end of the Reduce method
 – One pass to compute \((a, *) \)
 – Another pass to directly compute \(P(B|A) \)
Pairs vs Stripes Issues and Trade-offs

• Number of key-value pairs
 – Object creation overhead
 – Time for sorting and shuffling pairs across the network

• Size of each key-value pair
 – De/serialization overhead

• Combiners make a big difference!
 – RAM vs. disk and network
 – Arrange data to maximize opportunities to aggregate partial results
Synchronization in Hadoop

• **Approach 1:** turn synchronization into an ordering problem
 – Partition keys so that each reducer gets the appropriate set of partial results
 – Sort keys into correct order of computation
 – Hold state in reducer across multiple key-value pairs to perform computation
 – Illustrated by the “pairs” approach

• **Approach 2:** construct data structures that “bring the pieces together”
 – Each reducer receives all the data it needs to complete the computation
 – Illustrated by the “stripes” approach
Notes about MapReduce Jobs

• Tend to be very short, code-wise
 – Identity Reducer is common

• Represent a data flow, rather than a procedure
 – Data „flows“ through Map and Reduce stages

• Can be composed into larger data processing pipelines

• Iterative applications may require repeating the same job multiple times

• Data must be partitioned across many reducers if it is large

• Data will be written into multiple output files if there are more than a single Reduce task
Different MapReduce input formats

- The input types of a MapReduce application are not fixed and depend on the input format that is used.

<table>
<thead>
<tr>
<th>InputFormat</th>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextInputFormat (Default)</td>
<td>Byte offset of the line (LongWritable)</td>
<td>Line contents Text</td>
</tr>
<tr>
<td>KeyValueInputFormat</td>
<td>User Defined Writable Object e.g. PersonWritable</td>
<td>User Defined Writable Object</td>
</tr>
<tr>
<td>WholeFileInputFormat</td>
<td>NullWritable</td>
<td>File contents (BytesWritable)</td>
</tr>
<tr>
<td>NLineInputFormat</td>
<td>Byte offset of the line block (LongWritable)</td>
<td>Contents of N lines (Text)</td>
</tr>
<tr>
<td>TableInputFormat (HBase)</td>
<td>Row Key</td>
<td>Value</td>
</tr>
</tbody>
</table>
Complex Data Types in Hadoop

• How to use more complex data types as Keys and Values?
• The easiest way:
 – Encode it as a composed String, e.g., (a, b) = “a;b”
 – Use regular expressions to parse and extract data
 – Works, but pretty hack-ish
• The hard way:
 – Define a custom implementation of WritableComparable
 – Must implement: readFields, write, compareTo
 – Computationally more efficient, but slow for rapid prototyping
public class MyKey implements WritableComparable {
 private int ID;
 private long phone_num;

 public void write(DataOutput out) {
 out.writeInt(ID);
 out.writeLong(phone_num);
 }

 public void readFields(DataInput in) {
 ID = in.readInt();
 phone_num = in.readLong();
 }

 public int compareTo(MyKey o) {
 int res = Integer.compare(this.ID, o.ID);
 if (res != 0)
 return res;
 return Long.compare(this.phone_num, o.phone_num);
 }
}
Next Lab

• Creating a new MapReduce application
 – Analyzing an open dataset
 – Parsing CSV files
 – Aggregating data using simple statistical functions
References

• Jimmy Lin and Chris Dyer, "Data-Intensive Text Processing with MapReduce"
 Pages 50-57: Pairs and Stripes problem