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Recap

A Replication
A Reason for replication
A Reconciling differences in replicas, e.g., anti-entropy protocols

A Quorum
A Deciding valid data in replicas

BEERE

Read quorum Write quorum
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Agenda

A Goal: To study the importance of consensus in distributed
systems

A Content:
A State machine replication
A Consensus
A Raft (Modern implementation of consensus)
A Chain replicationi fial t er rmcatniswee stucs 0

After this lecture, you should be able to:
A To apply consensus to any distributed problem
A To understand the benefits and complexity of consensus
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State machine replication
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A The main idea behind is that a single process (the leader) broadcasts the
operations that change its state to other process, the followers (replicas)

A Total order broadcast: every node delivers the same messages in the
same order

A The followers execute the same sequence of operation as the leader, then
the state of each follower will match the leader

State machine replication (SMR): - every replica acts as SM
A FIFO-total order broadcast: every update to all replicas

A Replica deliver update message: apply to to own state
A Applying an update is deterministic i even errors

A Replica is a state machine: starts in fixed initial state, goes through same sequence of state
transitions in the same order Y all repl i cas
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State machine replication

Closely related ideas:
A Serializable transactions (execute in delivery order) i Active/Passive replication
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A Blockchains, distributed ledgers, smart contracts

Limitations:
A Cannot update state immediately, have to wait for delivery through broadcast

A Need fault-tolerant total order broadcast

[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)
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Other broadcasts

Assumptions about state update function

Total broadcast Deterministic (SMR)

Causal Deterministic, concurrent updates commute
Reliable Deterministic, all updates commute
Best-effort Deterministic, commutative, idempotent,

tolerate message loss
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When updates are commutative, replicas can process updates in different
orders and still end up in the same state
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consensus

A fundamental problem studied in distributed systems, which requires a set of
processes to agree on a value Iin fault tolerant way so that:

.

A Every non-faulty process eventually agrees on a value
A The final decision of every non-faulty process is the same everywhere
A The value that has been agreed on has been proposed by a process

Consensus has a large number of practical applications
A Commit transactions, Decisions in general (votes are involved)

A Hold a lock (Mutual exclusion), Failure detection (Byzantine)

Any problem that requires consensus can be solved with a state machine
replication



Consensus and total order broadcast
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A Leader regulates the consensus with the nodes via total order broadcast
A Single point of failure
A Failover: human operator chooses a new leader, e.g., databases

A Election algorithms can automate the selection of the leader (properties?)
A Consensus and total order broadcast are formally equivalent

Common consensus algorithms:
A Paxos: single-value consensus

A Multi-paxos: generalization to total order broadcast

A Raft, Viewstamped replication, Zab: FIFO-total order broadcast
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Consensus system models

A Paxos, Raft, etc., assume a partially synchronous crash-recovery model.
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A Why not asynchronous?
A FLP result (Fisher, Lynch, Paterson): There is no deterministic consensus algorithm that
IS guaranteed to terminate in an asynchronous crash-stop system model
A Paxos, Raft and others, use clocks only used for timeouts/failures detector to ensure
progress. Safety (correctness) does not depend on timing

There are also consensus algorithms for a partially synchronous Byzantine
system model (used in blockchains)

Practical considerations
ZooKeeper (https://zookeeper.apache.org/); etcd (https://etcd.io/)



https://zookeeper.apache.org/
https://etcd.io/

)
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Some consensus uses a leader to sequence messages

A Use a failure detector (timeout) to determine suspected crash or unavailable leader

A On suspected leader crash, a new leader is elected

A Prevent two | eader -lmartaitrh®e same time fAsplit

e

Elects a leader Cannot elect a different leader as C already voted
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| eader In consensus
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Ensure <= leader per term:

A Term is incremented every time a leader election is started
A A node can only vote once per term

A Require a quorum of nodes to elect a leader in a term

BEERE

Elects a leader Cannot elect a different leader as C already voted




A single leader?

T

A Cannot prevent having multiple leaders from different terms

A Example: Node 1 is leader in term t, but due to a network partition it can no
longer communication with node 2 and 3

Node 2 and 3 may elect a new leader intermt+ 1

Node 1 may not even know that a new leader has been elected!
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Checking If a leader has been voted out

Am | St_'” be Follower 1 Follower 2
leader in term t?

nEe—

yes

/ yeS

Can we delivEr message m next in term ?

yes

_\Right; now deliver m please

For every decision (message to deliver), the leader must first get acknowledgements
from a quorum.
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[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)



Raft
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A Modern solution the problem of consistency

A An algorithm that guarantees the strongest consistency possible
A Raft is based on state machine replication

A In Raft, time is divided into election term

A Aterm is depicted by a logical clock and just increases forward
A The term starts by an election to decide who becomes a leader

A Raft guarantees that for any term there is at most one leader



State machine replication (in Raft)

Follower
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Leader
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State machine replication (in Raft)

Times out, new election

Raft 6s

Starts up
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gor it R

Times out,
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Leader
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Raft
Algorithm (overview)
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A Every process starts as follower

A A follower expects to receive a periodic heartbeat from the leader
containing the election term the leader was elected in.

A If the follower does not receive any heartbeat within a certain period of time,
a timeout fires and the leader is presumed dead

A The follower start a new election by increment the current election term and
transitioning to candidate state

A It then votes for itself and sends a request to all processes in the system to
vote for it, stamping the request with the current election term
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Raft
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A The candidate wins the election: the candidate becomes a leader and
starts sending out heartbeats to the other processes

A Another process wins the election: In this case, terms between process
are compared, if another process claims to be the leader with a term greater

or equal the candidateod0Os term, 1t acc
follower state

A A period of time goes by with no winner: very unlikely, but if it happens,
then candidate will eventually time-out and starts a new election process

One single leader guarantee is enough?

On way to avoid dynamic leaders is by using a fencing token (a number that
Increases every time a distributed lock is acquired - a logical clock)
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Raft
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A The leader is the only one that can make changes to the replica states

A Alog is created inside the leader and then replicated across the followers
(log replication)

A When the leader applies an operation to its local state, it appends a new log
entry into its own log (operation is logged)
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Raft

Data storing in a
single node
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Raft
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Raft

Client
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Raft

Client
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Raft

Data storing in a
multiple nodes
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Raft

We cannot expect to communicate with all of them
(although we could)
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Raft

Follower Candidate Leader

We need a protocol structure to handle data
consistency across multiple nodes
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Raft
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Raft
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Raft
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Raft
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Raft

set 3

AppendEntries
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Raft

set 3

set 3
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Raft

ACK

—

set 3

ACK

set 3

set 3

4

b=
O\ W Emm——
W —
8

I_

38



Raft

set 3

set 3

set 3
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Raft

set 3

set 3

Leader wait only for a majority (Quorum) of followers to commit
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set 3
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Raft

set 3

set 3

set 3
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Raft In action

https://raft.github.io/

L eader Election

Continue ¥
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https://raft.github.io/
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Chalin replication
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AChain replication uses a very different topology than leader based replication
protocols

Aln chain replication, processes are arranged in a chain. The leftmost
process I s referred to the chai ndos he.
tail

Aln the absence of failures, the protocol is strongly consistent as all writes and
reads are processed one at a time.

AWhat happens if a node fails? There is a control panel component, which
monitors the health of the chain. The control panel implements consensus.

AThe chain can tolerate up to N -1 processes failing, where N is the chain
length. The control panel can just tolerate C/2 failures, where C is the number
of replicas that make up the control panel



Chalin replication

Write Read
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Chalin replication
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Chalin replication
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Chalin replication
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Chalin replication
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Chalin replication

Write(k, v2)
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Chalin replication

Write(k, v2)
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Chalin replication

Write(k, v2)
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Summary

A Studied a fundamental issue in distributed systems (Consensus)

A Studied state machine replication and an actual implementation
that uses it (Raft)

A Alternative solutions, Chain replication

.
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Questions?

E-mail: huber.flores@ut.ee
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