
LTAT.06.007 Distributed Systems

Lecture 8ïConsensus

Huber Flores, PhD

ASSOCIATE PROFESSOR

Tartu, Estonia, Delta building (auditorium 1021) 28/03/2022 1

Recap

Å Replication
Á Reason for replication

Á Reconciling differences in replicas, e.g., anti-entropy protocols

Å Quorum
Á Deciding valid data in replicas

2

A B C D E

Write quorumRead quorum

Think about

Back-up nodes

3

Online book

shop

Service

payment

Charge

Success

Service

payment

Service

payment

Server 1 Server 2 Server N

Leader Replica 1é.Replicaé N

Agreeing on the same values/operations over time

Agenda

Å Goal: To study the importance of consensus in distributed
systems

Å Content:
ÁState machine replication

ÁConsensus

ÁRaft (Modern implementation of consensus)

ÁChain replication ïñalternative to consensusò

After this lecture, you should be able to:

Å To apply consensus to any distributed problem

Å To understand the benefits and complexity of consensus

4

State machine replication

5

Essence

ÅThe main idea behind is that a single process (the leader) broadcasts the

operations that change its state to other process, the followers (replicas)

ÅTotal order broadcast: every node delivers the same messages in the

same order

ÅThe followers execute the same sequence of operation as the leader, then

the state of each follower will match the leader

State machine replication (SMR): - every replica acts as SM
Å FIFO-total order broadcast: every update to all replicas

Å Replica deliver update message: apply to to own state

Å Applying an update is deterministic ïeven errors

Å Replica is a state machine: starts in fixed initial state, goes through same sequence of state

transitions in the same order Ÿ all replicas end up in the same state

State machine replication

6

Essence

Closely related ideas:
Å Serializable transactions (execute in delivery order) ïActive/Passive replication

Å Blockchains, distributed ledgers, smart contracts

Limitations:
Å Cannot update state immediately, have to wait for delivery through broadcast

Å Need fault-tolerant total order broadcast

[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)

Database leader replica

7

Client 1 Leader Follower

{x (t1,true)}

T1

Client 2

T2

ok

ok

commit

commit

T1

T2

Other broadcasts

8

Broadcast Assumptions about state update function

Total broadcast Deterministic (SMR)

Causal Deterministic, concurrent updates commute

Reliable Deterministic, all updates commute

Best-effort Deterministic, commutative, idempotent,

tolerate message loss

Observation

When updates are commutative, replicas can process updates in different

orders and still end up in the same state

Consensus

9

Essence

A fundamental problem studied in distributed systems, which requires a set of

processes to agree on a value in fault tolerant way so that:

ÅEvery non-faulty process eventually agrees on a value

ÅThe final decision of every non-faulty process is the same everywhere

ÅThe value that has been agreed on has been proposed by a process

Consensus has a large number of practical applications
Å Commit transactions, Decisions in general (votes are involved)

Å Hold a lock (Mutual exclusion), Failure detection (Byzantine)

Any problem that requires consensus can be solved with a state machine

replication

Consensus and total order broadcast

10

More about consensus

ÅLeader regulates the consensus with the nodes via total order broadcast
Å Single point of failure

Å Failover: human operator chooses a new leader, e.g., databases

ÅElection algorithms can automate the selection of the leader (properties?)

ÅConsensus and total order broadcast are formally equivalent

Common consensus algorithms:
Å Paxos: single-value consensus

Å Multi-paxos: generalization to total order broadcast

Å Raft, Viewstamped replication, Zab: FIFO-total order broadcast

Consensus system models

11

Essence

ÅPaxos, Raft, etc., assume a partially synchronous crash-recovery model.

ÅWhy not asynchronous?
Á FLP result (Fisher, Lynch, Paterson): There is no deterministic consensus algorithm that

is guaranteed to terminate in an asynchronous crash-stop system model

Á Paxos, Raft and others, use clocks only used for timeouts/failures detector to ensure

progress. Safety (correctness) does not depend on timing

There are also consensus algorithms for a partially synchronous Byzantine

system model (used in blockchains)

Practical considerations

ZooKeeper (https://zookeeper.apache.org/); etcd (https://etcd.io/)

https://zookeeper.apache.org/
https://etcd.io/

Leader in consensus

12

Observations

Some consensus uses a leader to sequence messages
Å Use a failure detector (timeout) to determine suspected crash or unavailable leader

Å On suspected leader crash, a new leader is elected

Å Prevent two leader at the same time ñsplit-brainò

A B C D E

Cannot elect a different leader as C already votedElects a leader

Leader in consensus

13

Observations

Ensure <= leader per term:
Å Term is incremented every time a leader election is started

Å A node can only vote once per term

Å Require a quorum of nodes to elect a leader in a term

A B C D E

Cannot elect a different leader as C already votedElects a leader

A single leader?

14

Can guarantee unique leader per term?

ÅCannot prevent having multiple leaders from different terms

ÅExample: Node 1 is leader in term t, but due to a network partition it can no

longer communication with node 2 and 3

Node 1 Node 2 Node 3

Node 2 and 3 may elect a new leader in term t + 1

Node 1 may not even know that a new leader has been elected!

Checking if a leader has been voted out

15

Leader Follower 1 Follower 2

For every decision (message to deliver), the leader must first get acknowledgements

from a quorum.

Am I still be

leader in term t?

yes

m1

[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)

yes

yes yes

Raft

16

Essence

ÅModern solution the problem of consistency

ÅAn algorithm that guarantees the strongest consistency possible

ÅRaft is based on state machine replication

Å In Raft, time is divided into election term

ÅA term is depicted by a logical clock and just increases forward

ÅThe term starts by an election to decide who becomes a leader

ÅRaft guarantees that for any term there is at most one leader

State machine replication (in Raft)

17

Follower Candidate Leader

State machine replication (in Raft)

Raftôs algorithm

18

Follower Candidate Leader

Times out, new election

Starts up

Discovers new term

Times out,

start election

Receives vote

from majority

Discovers current

leader or new term

Raft

19

Algorithm (overview)

ÅEvery process starts as follower

ÅA follower expects to receive a periodic heartbeat from the leader

containing the election term the leader was elected in.

Å If the follower does not receive any heartbeat within a certain period of time,

a timeout fires and the leader is presumed dead

ÅThe follower start a new election by increment the current election term and

transitioning to candidate state

Å It then votes for itself and sends a request to all processes in the system to

vote for it, stamping the request with the current election term

Raft

20

Outcome

ÅThe candidate wins the election: the candidate becomes a leader and

starts sending out heartbeats to the other processes

ÅAnother process wins the election: In this case, terms between process

are compared, if another process claims to be the leader with a term greater

or equal the candidateôs term, it accepts the new leader and returns to the

follower state

ÅA period of time goes by with no winner: very unlikely, but if it happens,

then candidate will eventually time-out and starts a new election process

One single leader guarantee is enough?

On way to avoid dynamic leaders is by using a fencing token (a number that

increases every time a distributed lock is acquired - a logical clock)

Raft

21

Log replication

ÅThe leader is the only one that can make changes to the replica states

ÅA log is created inside the leader and then replicated across the followers

(log replication)

ÅWhen the leader applies an operation to its local state, it appends a new log

entry into its own log (operation is logged)

Raft

22

Leader
1

x Ŷ 3

1

yŶ 1

1

y Ŷ 9

2

x Ŷ 2

3

x Ŷ 0

3

yŶ 7

3

x Ŷ 5

3

x Ŷ 4

1 2 3 4 5 6 7 8 Log index

1

x Ŷ 3

1

yŶ 1

1

y Ŷ 9

2

x Ŷ 2

3

x Ŷ 0

1

x Ŷ 3

1

yŶ 1

1

y Ŷ 9

2

x Ŷ 2

3

x Ŷ 0

3

yŶ 7

3

x Ŷ 5

3

x Ŷ 4

1

x Ŷ 3

1

yŶ 1

Followers

Committed entries [source] Raftôs paper

Raft

23

Data storing in a

single node

Raft

24

X

Raft

25

X

Client

Raft

26

3

Client

3

Raft

27

33

Data storing in a

multiple nodes

Raft

28

We cannot expect to communicate with all of them

(although we could)

Raft

29

Follower Candidate Leader

We need a protocol structure to handle data

consistency across multiple nodes

Raft

30

Raft

31

Raft

32

Raft

33

Raft

34

Raft

35

Raft

36

33

set 3

AppendEntries

Raft

37

3

set 3

set 3

set 3

Raft

38

3

set 3

set 3

set 3

ACK

ACK

Raft

39

3

set 3

set 3

set 3

3

Raft

40

3

set 3

set 3

set 3

3

Leader wait only for a majority (Quorum) of followers to commit

Raft

41

3

set 3

set 3

set 3

3 3

3

Raft in action

42https://raft.github.io/

https://raft.github.io/

Chain replication

43

Essence

ÅChain replication uses a very different topology than leader based replication

protocols

ÅIn chain replication, processes are arranged in a chain. The leftmost

process is referred to the chainôs head, while the rightmost one as the chainôs

tail

ÅIn the absence of failures, the protocol is strongly consistent as all writes and

reads are processed one at a time.

ÅWhat happens if a node fails? There is a control panel component, which

monitors the health of the chain. The control panel implements consensus.

ÅThe chain can tolerate up to N -1 processes failing, where N is the chain

length. The control panel can just tolerate C/2 failures, where C is the number

of replicas that make up the control panel

Chain replication

44

ReadWrite

Head Tail

Chain replication

45

Write

Chain replication

46

Write

Chain replication

47

Write

Chain replication

48

Write

Chain replication

49

Write

Chain replication

50

Read

Chain replication

51

(dirty)

Read(k)

k -> v1, v2

(clean)

Read(k)Write(k, v2)

k -> v1, v2 k -> v1 k -> v1

Chain replication

52

(dirty)

Read(k)

k -> v1, v2

(clean)

Read(k)Write(k, v2)

k -> v1, v2 k -> v1 k -> v1

k?

Chain replication

53

(dirty)

Read(k)

k -> v1, v2

(clean)

Read(k)Write(k, v2)

v1

k -> v1 k -> v1k -> v1, v2

v1

Summary

Å Studied a fundamental issue in distributed systems (Consensus)

Å Studied state machine replication and an actual implementation
that uses it (Raft)

Å Alternative solutions, Chain replication

54

References

Part of this material is inspired by:

Å Understanding Distributed Systems, Version 1.1.1., Roberto Vitillo, 2021

Å Distributed Systems course given by Dr. Martin Kleppmann (University of
Cambridge, UK)

Å Van Steen, Maarten, and Andrew S. Tanenbaum. Distributed systems.
Leiden, The Netherlands: Maarten van Steen, 2017.

Å Raft - Understandable Distributed Consensus,
http://thesecretlivesofdata.com/raft/

55

http://thesecretlivesofdata.com/raft/

Next lecture
Consistency models

Tartu, Estonia 28/03/2022 56

Questions?

E-mail: huber.flores@ut.ee

57

