Z& UNIVERSITY oF TARTU
.|;! Institute of Computer Science
1632

LTAT.06.007 Distributed Systems

Lecture 8 1 Consensus

Huber Flores, PhD

Tartu, Estonia, Delta building (auditorium 1021) 28/03/2022

Recap

A Replication
A Reason for replication
A Reconciling differences in replicas, e.g., anti-entropy protocols

A Quorum
A Deciding valid data in replicas

BEERE

Read quorum Write quorum

)

I
- [
O\ W E—
\g - E———

I

Think about

Back-up nodes

Online book
shop

C

harge

T S e N R
—

Leader Replicaelpd.i cace

Server 1 Server 2 Server N

Service Service
payment payment payment

Agreeing on the same values/operations over time

Agenda

A Goal: To study the importance of consensus in distributed
systems

A Content:
A State machine replication
A Consensus
A Raft (Modern implementation of consensus)
A Chain replicationi fial t er rmcatniswee stucs 0

After this lecture, you should be able to:
A To apply consensus to any distributed problem
A To understand the benefits and complexity of consensus

)

P —
- N
O\ W Emm——
\s - ———

I_

)

State machine replication

_’z

A The main idea behind is that a single process (the leader) broadcasts the
operations that change its state to other process, the followers (replicas)

A Total order broadcast: every node delivers the same messages in the
same order

A The followers execute the same sequence of operation as the leader, then
the state of each follower will match the leader

State machine replication (SMR): - every replica acts as SM
A FIFO-total order broadcast: every update to all replicas

A Replica deliver update message: apply to to own state
A Applying an update is deterministic i even errors

A Replica is a state machine: starts in fixed initial state, goes through same sequence of state
transitions in the same order Y all repl i cas

4

State machine replication

Closely related ideas:
A Serializable transactions (execute in delivery order) i Active/Passive replication

O\ = Emm—

.
($Y)
™

A Blockchains, distributed ledgers, smart contracts

Limitations:
A Cannot update state immediately, have to wait for delivery through broadcast

A Need fault-tolerant total order broadcast

[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)

=/

o E5 E’a

{x- (t;,true)}

Database leader replica

commit

Other broadcasts

Assumptions about state update function

Total broadcast Deterministic (SMR)

Causal Deterministic, concurrent updates commute
Reliable Deterministic, all updates commute
Best-effort Deterministic, commutative, idempotent,

tolerate message loss

)

P —
- N
O\ W Emm——
\s - ———

I_

When updates are commutative, replicas can process updates in different
orders and still end up in the same state

)

=
I
O\ W Emm——

($Y)
™

consensus

A fundamental problem studied in distributed systems, which requires a set of
processes to agree on a value Iin fault tolerant way so that:

.

A Every non-faulty process eventually agrees on a value
A The final decision of every non-faulty process is the same everywhere
A The value that has been agreed on has been proposed by a process

Consensus has a large number of practical applications
A Commit transactions, Decisions in general (votes are involved)

A Hold a lock (Mutual exclusion), Failure detection (Byzantine)

Any problem that requires consensus can be solved with a state machine
replication

Consensus and total order broadcast

)

=
I

O\ W Emm——
i EE———
I_

.
($Y)
™

A Leader regulates the consensus with the nodes via total order broadcast
A Single point of failure
A Failover: human operator chooses a new leader, e.g., databases

A Election algorithms can automate the selection of the leader (properties?)
A Consensus and total order broadcast are formally equivalent

Common consensus algorithms:
A Paxos: single-value consensus

A Multi-paxos: generalization to total order broadcast

A Raft, Viewstamped replication, Zab: FIFO-total order broadcast

)

Consensus system models

A Paxos, Raft, etc., assume a partially synchronous crash-recovery model.

O\ = Emm—

.
($Y)
™

A Why not asynchronous?
A FLP result (Fisher, Lynch, Paterson): There is no deterministic consensus algorithm that
IS guaranteed to terminate in an asynchronous crash-stop system model
A Paxos, Raft and others, use clocks only used for timeouts/failures detector to ensure
progress. Safety (correctness) does not depend on timing

There are also consensus algorithms for a partially synchronous Byzantine
system model (used in blockchains)

Practical considerations
ZooKeeper (https://zookeeper.apache.org/); etcd (https://etcd.io/)

https://zookeeper.apache.org/
https://etcd.io/

)

| eader In consensus

O\ = Emm—

.
($Y)
™

Some consensus uses a leader to sequence messages

A Use a failure detector (timeout) to determine suspected crash or unavailable leader

A On suspected leader crash, a new leader is elected

A Prevent two | eader -lmartaitrh®e same time fAsplit

e

Elects a leader Cannot elect a different leader as C already voted

)

| eader In consensus

O\ = Emm—

.
($Y)
™

Ensure <= leader per term:

A Term is incremented every time a leader election is started
A A node can only vote once per term

A Require a quorum of nodes to elect a leader in a term

BEERE

Elects a leader Cannot elect a different leader as C already voted

A single leader?

T

A Cannot prevent having multiple leaders from different terms

A Example: Node 1 is leader in term t, but due to a network partition it can no
longer communication with node 2 and 3

Node 2 and 3 may elect a new leader intermt+ 1

Node 1 may not even know that a new leader has been elected!

4

I\ E—

Y]
™

)

Checking If a leader has been voted out

Am | St_'” be Follower 1 Follower 2
leader in term t?

nEe—

yes

/ yeS

Can we delivEr message m next in term ?

yes

_\Right; now deliver m please

For every decision (message to deliver), the leader must first get acknowledgements
from a quorum.

O\ = Emm—

1
($Y)
™

[source] Distributed Systems course given by Dr. Martin Kleppmann (University of Cambridge, UK)

Raft

4

P —
- N
O\ W Emm——
\s - ———

I_

A Modern solution the problem of consistency

A An algorithm that guarantees the strongest consistency possible
A Raft is based on state machine replication

A In Raft, time is divided into election term

A Aterm is depicted by a logical clock and just increases forward
A The term starts by an election to decide who becomes a leader

A Raft guarantees that for any term there is at most one leader

State machine replication (in Raft)

Follower

Candidate

Leader

4

=
I

O\ W Emm——
=
I_

L0

17

State machine replication (in Raft)

Times out, new election

Raft 6s

Starts up

a l

gor it R

Times out,
start election

Candidate
Discovers current

leader or new term

Discovers new term

Receives vote
from majority

Leader

4

=
I

O\ W Emm——
- E————
I_

.
($Y)
™

)

Raft
Algorithm (overview)

1

O\ W Emm——

\s - ———
I_

A Every process starts as follower

A A follower expects to receive a periodic heartbeat from the leader
containing the election term the leader was elected in.

A If the follower does not receive any heartbeat within a certain period of time,
a timeout fires and the leader is presumed dead

A The follower start a new election by increment the current election term and
transitioning to candidate state

A It then votes for itself and sends a request to all processes in the system to
vote for it, stamping the request with the current election term

)

Raft

O\ = Emm—
| Es—
Em——

1
3]
™

A The candidate wins the election: the candidate becomes a leader and
starts sending out heartbeats to the other processes

A Another process wins the election: In this case, terms between process
are compared, if another process claims to be the leader with a term greater

or equal the candidateod0Os term, 1t acc
follower state

A A period of time goes by with no winner: very unlikely, but if it happens,
then candidate will eventually time-out and starts a new election process

One single leader guarantee is enough?

On way to avoid dynamic leaders is by using a fencing token (a number that
Increases every time a distributed lock is acquired - a logical clock)

4

Raft

" —
% [=f]
I_

A The leader is the only one that can make changes to the replica states

A Alog is created inside the leader and then replicated across the followers
(log replication)

A When the leader applies an operation to its local state, it appends a new log
entry into its own log (operation is logged)

4

Raft 11
1 2 4) 6 / Logindg)z(
1 1 2 3 3 3

N . . L

x ¥ |8y J\ o Y|e v|wy 4x cader
1 1 2 3)

X Y |\BY ¥ Y2 Y| O
1 1 2 3 3 3 Followers

x ¥ |gYy 0 Y2 Y|wr 1« 4
1 1

X Y |\BY _

Committed entries

[source] RaTtdés p

Raft

Data storing in a
single node

4

=
I
O\ H EEm——

($Y)
™

L0

23

Raft

4

=
I

O\ H EEm——
=
I_

L0

24

Raft

Client

4

=
I

O\ H EEm——
=
I_

L0

25

Raft

Client

4

=
I

O\ H EEm——
=
I_

L0

26

Raft

Data storing in a
multiple nodes

4

=
I
O\ W Emm——

($Y)
™

L0

27

Raft

We cannot expect to communicate with all of them
(although we could)

4

=
- N
O\ = EEm—
\s [=f]

I_

28

Raft

Follower Candidate Leader

We need a protocol structure to handle data
consistency across multiple nodes

4

=
I

O\ W Emm——
- E————
I_

.
($Y)
™

29

Raft

4

=
I

O\ = E—
[
l_

L0

30

AA

Raft

31

Raft

Raft

Raft

4

=
I

O\ H EEm——
=
I_

L0

34

Raft

4

=
I

O\ H EEm——
=
I_

L0

35

Raft

set 3

AppendEntries

4

=
I
O\ H EEm——

($Y)
™

L0

36

Raft

set 3

set 3

4

=
I

O\ W Emm——
=
I_

L0

37

Raft

ACK

—

set 3

ACK

set 3

set 3

4

b=
O\ W Emm——
W —
8

I_

38

Raft

set 3

set 3

set 3

4

-
O\ = Emm——

39

Raft

set 3

set 3

Leader wait only for a majority (Quorum) of followers to commit

@ —©

set 3

4

=
- N
O\ = EEm—
\s [=f]

I_

40

Raft

set 3

set 3

set 3

4

=
I

O\ W Emm——
=
I_

L0

Raft In action

https://raft.github.io/

L eader Election

Continue ¥

)

=
I

O\ W Emm——
=
I_

.

https://raft.github.io/

)

Chalin replication

\ I

_’z

AChain replication uses a very different topology than leader based replication
protocols

Aln chain replication, processes are arranged in a chain. The leftmost
process I s referred to the chai ndos he.
tail

Aln the absence of failures, the protocol is strongly consistent as all writes and
reads are processed one at a time.

AWhat happens if a node fails? There is a control panel component, which
monitors the health of the chain. The control panel implements consensus.

AThe chain can tolerate up to N -1 processes failing, where N is the chain
length. The control panel can just tolerate C/2 failures, where C is the number
of replicas that make up the control panel

Chalin replication

Write Read
é é

EDE EDE EDE EDE

Head Tail

)

O\ W E—

L

Chalin replication

‘2. Write
EDE EDE

S

)

.
o\ m
X =

i

Chalin replication

‘2. Write
EDE EDE EDE EDE

0

=)

L

Chalin replication

‘2. Write
EDE EDE EDE EDE

0 0

=)

L

Chalin replication

‘2. Write
EDE EDE EDE EDE

0 0 0

=)

L

Chalin replication

‘2’ Write
EDE EDE EDE EDE

O O O

=)

L

Chalin replication

EDE EDE

)

.
o\ m
X =

i

Chalin replication

Write(k, v2)
é

k->vl, v2

k->vl, v2

(dirty)

Read(k) ‘g’
A o

)

O\ W E—
e
=

L

(clean)

Read(k) ‘2.
é .

Chalin replication

Write(k, v2)
é

k->vl, v2

(dirty)

Read(k) ‘g’
A o

/\

k->vl, v2

K?

)

O\ W E—
e
=

L

(clean)

Read(k) ‘2.
é .

Chalin replication

Write(k, v2)
é

k->vl, v2

k->vl, v2

(dirty)

Read(K) ‘g’
é °

)

O\ W E—

L

(clean)

Read(k) ‘2.
é .

vl

)

=
I

O\ W Emm——
i EE———
I_

($Y)
™

Summary

A Studied a fundamental issue in distributed systems (Consensus)

A Studied state machine replication and an actual implementation
that uses it (Raft)

A Alternative solutions, Chain replication

.

References

Part of this material is inspired by:
A Understanding Distributed Systems, Version 1.1.1., Roberto Vitillo, 2021

Distributed Systems course given by Dr. Martin Kleppmann (University of
Cambridge, UK)

A

A Van Steen, Maarten, and Andrew S. Tanenbaum. Distributed systems.
Leiden, The Netherlands: Maarten van Steen, 2017.

A

Raft - Understandable Distributed Consensus,
http://thesecretlivesofdata.com/raft/

http://thesecretlivesofdata.com/raft/

UNIVERSITY or TARTU
Institute of Computer Science

ext lecture

Consistency models

Tartu, Estonia 28/03/2022

Questions?

E-mail: huber.flores@ut.ee

S7

