Software Testing LTAT.05.006

HW 11: Document Inspection and Fault Estimation (V1.1)

Institute of Computer Science, University of Tartu

- Submission deadline: Lab reports must be submitted within seven days. For example, if your lab takes place on Tuesday, then you have to submit your report no later than the following Monday, 23:59 hours.
- Late submission policy:
 - 50% deducted for submission up to 24 hours late.
 - 100% deducted for submission more than 24 hours late.
- Group: There should be a maximum of two members in a group. Answers should be your own group work, explained in your own words. If you work in a group of two students, make sure to mention the names of both students in the submitted lab report.
- The maximum number of points is nine (9).

Document inspection is an important static technique to detect faults early in the software life cycle. The purpose of inspections is to manually scrutinize a software artifact, for example, requirements, design, or code. In addition to inspections, estimation techniques can be applied in order to estimate the fault content.

The following activities need to be done for completing this assignment:

Part A (ca. 40-60 min): Individual work – don’t interact with another person in the room!

1. Read and understand the requirements and the related specification document (see below).

2. Review the specification document against the requirements (6 user stories). Assess the quality of the specification document. Identify issues in the specification document (e.g., inconsistencies within the specification, missing or incorrect functionality, unnecessary functionality (‘gold plating’), unclear/ambiguous statements, spelling errors, and so on). Create a well-organized list of all the issues you spot. Each issue should have an ID, a brief description, and a remark that helps localize the issue, the type of issue, and the severity of the issue. Clearly define the categories ‘type’ and ‘severity’ and explain the underlying rationale for the definition of types and severity levels.

 Important: Make sure to document your work – you will have to include it in the lab report!

3. To get maximum marks for Part A, you need to find at least 8 issues, and you have to provide correctly all the information requested in point 2 above.

4. Before you proceed to Part B, show your work to the lab supervisor.
Part B Work in Pairs

5. Before you leave the lab, find a partner. Note: If the number of lab attendees is odd, there can be **exactly one** group of 3 students in the lab.

 Important: If you do not form a pair, you will not be able to get marks for Part B.

6. Share your individual issue lists and create a consolidated list. This might require that you have to redefine your type categories and severity classes. Explain the reasoning that made you agree with the new definitions. The consolidated list should be well-organized, and each issue should have an ID. Make sure that traceability to the individual lists is maintained. In particular, the consolidated list should clearly indicate whether an issue was found by one student only or by both students.

7. In case you have a disagreement on whether an issue detected by one student is the same as the issue of the other student or whether an issue found by one student (but not the other) is actually an issue, still, take a decision on whether to count the issues as separate or identical and make a comment explaining the different viewpoints (and why it was difficult to come to an agreement).

8. Based on the consolidated issue list, i.e., the number of issues detected and the information given on who detected an issue, make an estimate of the number of remaining (i.e., undetected) issues in the specification document. Use any of the capture-recapture model formulas presented during the lecture. Show your calculations.

Reporting

Submit a report consisting of

- **Part A:** Report your individual issue lists (incl. an explanation of the rationale for the choice of format and organization of each individual list). Each of your individual lists should contain at least 8 issues. Thus, if you work as a pair, there must be two individual lists with explanations.

 Sample Table:

<table>
<thead>
<tr>
<th>Issue ID</th>
<th>Description</th>
<th>Localisation</th>
<th>Type</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

- **Part B:** Report the consolidated list (incl. an explanation of the rationale for the definition of issue types and severity classes), plus comments on cases where you had difficulties coming to an agreement; report your estimates of remaining issues (show and explain your calculation).
Sample Table:

<table>
<thead>
<tr>
<th>Issue ID</th>
<th>Description</th>
<th>Localisation</th>
<th>Type</th>
<th>Severity</th>
<th>Traceability</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Important: If you work in a team, make sure that the names and student IDs of **ALL** team members are clearly stated in the report.

Grading

- **Part A:** 3 marks per individual list [6 marks total] – will be adjusted in case the lab report is not written by 2 students.
 - You can get full marks per individual list only if you have described at least 8 (actual) issues and no information is missing.
 - If you work alone: the marks for an individual list of a pair are doubled (i.e., so you can get a maximum of 6 marks)
 - If you work as a group of 3 (exceptional case!): the marks for an individual list are 2/3 of the marks for an individual list of a pair (i.e., so the group of 3 will get at most 6 marks)

- **Part B:** 3 marks per consolidated list & estimation [3 marks total] – you won’t be able to get these marks if you work alone.
 - You can get full marks only if the consolidated list is complete and full traceability to the individual lists is provided [2 marks], and you make a correct estimate of remaining issues (using a capture-recapture model and showing your calculations) [1 mark]
Requirements

The following list of user stories (US) have been received from a customer representative (i.e., marketing):

- **US1:** As a customer, I would like to be able to search for flights, hotels, rental cars, cruises, and packages that combine flights with hotels and car rentals
- **US2:** As a customer, I would like to search for one-way, return, and multiple-leg flights
- **US3:** As a customer, I would like to choose the classes/categories of my flights, hotels, and cars
- **US4:** As a customer, I would like to search not only for myself but for my whole family
- **US5:** As a customer, I would like to search for nonstop and refundable flights
- **US6:** As a customer, I would like to restrict my searches to specific airlines, hotel chains, and car rental companies

Note: The following specification should only be checked against **this set** of requirements (i.e., the 6 user stories listed above).

Specification

The actual **specification document** to be reviewed starts on the next page. Before you start with your review, read the following notes:

- The specification presented on the next two pages is supposed to correspond exactly with the explicit (and implicit) requirements listed in section ‘Requirements’ above.

- The specification consists of both a specification text and two mock-ups of search screens that the web application to be developed will provide. The functionality contained in the two mock-up search screens (and the related textual description) is supposed to address the needs of users (i.e., future customers) that want to search for flight offers.

- Screen 1 shows what a customer sees when selecting search option ‘Flights’ + ‘Roundtrip.’ When you review the screen and the corresponding specification text, you should restrict your review to the functionality that should be provided if a customer wants to search for roundtrip flight offers. Note also that ‘Advanced options’ has not been selected. You can assume that the customer will see exactly the same information that is shown on Screen 2 if ‘Advanced options’ had been selected.

- Screen 2 shows what a customer sees when selecting search option ‘Flights’ + ‘One way.’ Thus, when you review the screen and the corresponding specification text, you should restrict your review to the functionality that should be provided if a customer wants to search for one-way flight offers. Note also that ‘Advanced options’ has been selected. You can assume that the customer will see exactly the same information that is shown on Screen 1 if ‘Advanced options’ had not been selected.
Specification Document (relating to the 6 user stories listed in the Requirements section):

Screen 1: Mock-up screen in the state after the ‘Flights’ button and ‘Roundtrip’ button have been selected and before any additional data has been entered or functions have been activated by the customer (i.e., the user of the web-application to be developed).

Screen 2: Mock-up screen in the state after the ‘Flights’ button and ‘One way’ button as well as ‘Advanced options’ have been selected, and before any additional data has been entered or functions have been activated by the customer (i.e., the user of the web-application to be developed)
1. The search screen shows a welcome line with text in the top line

2. The user can select 6 main functions by pressing any of the buttons ‘Flights’, ‘Hotels’, ‘Flights + Hotels’, ‘Cars’, ‘Cruises’, and ‘Things to do’

3. When ‘Fights’ has been selected, the user can select 3 search modes by pressing any of the buttons ‘Roundtrip’, ‘One way’, and ‘Multiple destinations’

(Note: the following assumes that the ‘Flight’ button has been selected)

4. When ‘Roundtrip’ has been selected (Screen 1), the user can do the following:
 a) Specify flight start location (city or airport) and flight destination (city or airport); this is supported by a pull-down menu (not shown in detail in the screen mock-ups)
 b) Departure date and return date (format: dd/mm/yyyy); this is supported by a calendar menu from where the user can pick the dates (not shown in detail in the screen mock-ups) – alternatively the dates can be entered by the user directly in the specified format

5. When ‘One way’ has been selected (Screen 2), the user can do the following:
 a) Specify flight start location (city or airport) and flight destination (city or airport); this is supported by a pull-down menu (not shown in detail in the screen mock-ups)
 b) Departure date (format: dd/mm/yyyy); this is supported by a calendar menu from where the user can pick the dates (not shown in detail in the screen mock-ups) – alternatively the date can be entered by the user directly in the specified format

6. The user can select the number of adults and the number of children (supported by pull-down menus); the default selection for adults is ‘1’, that for children is ‘0’

7. The user can check boxes ‘Add a hotel’ and ‘Add a car’, if offers for a hotel and/or a rental car should be added to the flight offers

8. If the user selects ‘Advanced options’, then he can restrict his flight search to ‘Non-stop’ and/or ‘Refundable’ flights. In addition, he can select the flight class (first – business – premium economy – economy)

9. Pressing the ‘Search’ button will start the retrieval of flight offers

10. Pressing the ‘Check’ button will start the retrieval of flight offers and check the availability of free seats

(Note: The specification of output screens is NOT shown. Therefore, you cannot know whether they are specified correctly, and thus you should not speculate about any issues related to them. You shall focus exclusively on reviewing whether the specification document actually provided contains any issues related to searches for roundtrip and one-way flights in the to-be-developed web application.
Also, you should check whether the specification document contains functionality that has not been mentioned (explicitly or implicitly) in the list of requirements and thus would be ‘gold plating’.