
Web Application
Development
2019

Javascript
Part I

Javascript

JavaScript is a scripting or programming language that allows
you to implement complex things on web pages — displaying
timely content updates, interactive maps, animated 2D/3D
graphics etc.It is the third layer of the layer cake of standard
web technologies, alongside with HTML and CSS

“

”
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

HTML

The markup language that
we use to structure and
give meaning to our web
content.

CSS

A language of style rules
that we use to apply styling
to our HTML content

Javascript

A scripting language that
enables us to create
dynamically updating
content, control multimedia,
animate images, and
muchmore

Java != Javascript

Java is to JavaScript

as

Car is to Carpet

How does it work?

The JavaScript is executed by the browser's JavaScript engine,
after the HTML and CSS have been assembled and put together
into a web page.

This ensures that the structure and style of the page are already in
place by the time the JavaScript starts to run.

Add Javascript to HTML page

Internal Javascript
1. <!doctype html>
1. ...

2. <body>

3. <script>

4. // JavaScript goes here

5. </script>

6. </body>

7. ...

External Javascript
1. <!doctype html>
1. ...

2. <head>

3. ...

4. <script src="script.js"></script>

5. ...

6. </head>

7. ...

Inline Javascript
Handlers

1. <!doctype html>
1. <button onclick="doSomething()">Click me!</button>

2. <script>

3. function doSomething() {

4. // Do Something

5. }

6. </script>

NB: Please don't do this, however. It is bad practice to pollute your HTML with
JavaScript, and it is inefficient

Variables

Variables A variable is a container for a value, like a number we
might use in a sum, or a string that we might use as
part of a sentence. But one special thing about
variables is that their contained values can change

Declaring a variable
1. <!doctype html>
1. let myName;

2. let myAge;

Variable Naming: You can call a variable pretty much anything you
like, but there are limitations. Generally, you should stick to just using
Latin characters (0-9, a-z, A-Z) and the underscore character.
It is advised to use lowerCamelCase

Initializing a variable
1. <!doctype html>
1. myName = 'John';

2. myAge = 26;

3. let myDog = 'Bobby';

Updating a variable
1. <!doctype html>
1. myName = 'Bob';

2. myAge = 27;

3. myDog = 'Is a Cat now';

Variable types
1. <!doctype html>
1. let myAge = 17;

2. let myHeight = 1.79;

3. let myVision = -20;

4.

5. let theQuickBrownFox = 'jumped over lazy dog';

6.

7. let iAmAlive = true;

8. let test = 6 < 3;

9.

10. let myNameArray = ['Chris', 'Bob', 'Jim'];

11. let myNumberArray = [10, 15, 40];

12.

13. let dog = { name : 'Spot', breed : 'Dalmatian' };

Dynamic typing
1. <!doctype html>
1. let myNumber = 'five hundred';

2. myNumber = 500;

3. myNumber = false;

JavaScript is a "dynamically
typed language", which means
that, unlike some other
languages, you don't need to
specify what data type a
variable will contain (numbers,
strings, arrays, etc).

Constants
1. <!doctype html>
1. const daysInWeek = 7;

2. const hoursInDay = 24;

Many programming languages
have the concept of a constant
— a value that once declared
can never be changed.

1. <!doctype html>
1. daysInWeek = 8;

2. hoursInDay = 25;

Operators

Operator Name Purpose Example

+ Addition Adds two numbers together. 6 + 9

- Subtraction Subtracts the right number from the left. 20 - 15

* Multiplication Multiplies two numbers together. 3 * 7

/ Division Divides the left number by the right. 10 / 5

% Remainder
(sometimes
called modulo)

Returns the remainder left over after you've
divided the left number into a number of integer
portions equal to the right number.

8 % 3 (returns 2, as three goes into 8
twice, leaving 2 left over).

** Exponent Raises a base number to the exponent power,
that is, the base number multiplied by itself,
exponent times.

5 ** 2 (returns 25, which is the same
as 5 * 5).

Operator
precedence

What will be the value of
variable num3?

● 12
● 5
● 2.4

1. <!doctype html>
1. let num1 = 16;

2. let num2 = 8;

3. let num3 = num2 + num1 / 8 + 2;

Operator
precedence

What will be the value of
variable num3?

● 12
● 5
● 2.4

1. <!doctype html>
1. let num1 = 16;

2. let num2 = 8;

3. let num3 = num2 + num1 / 8 + 2;

Increment and
decrement
operators

1. <!doctype html>
1. let num1 = 4;

2. num1++;

3. //5

4. let num2 = 6;

5. num2--;

6. //5

Operator Name Purpose Example Shortcut for

+= Addition
assignment

Adds the value on the right to the variable
value on the left, then returns the new variable
value

x = 3;
x += 4;

x = 3;
x = x + 4;

-= Subtraction
assignment

Subtracts the value on the right from the
variable value on the left, and returns the new
variable value

x = 6;
x -= 3;

x = 6;
x = x - 3;

*= Multiplication
assignment

Multiplies the variable value on the left by the
value on the right, and returns the new
variable value

x = 2;
x *= 3;

x = 2;
x = x * 3;

/= Division
assignment

Divides the variable value on the left by the
value on the right, and returns the new
variable value

x = 10;
x /= 5;

x = 10;
x = x / 5;

Concatenating
strings

1. <!doctype html>
1. let one = 'Hello, ';

2. let two = “how are you?”;

3. let joined = one + two;

4. // Hello, how are you?

Concatenating
strings

1. <!doctype html>
1. let one = 'Hello, ';

2. let two = 404;

3. let joined = one + two;

4. // Hello, 404?

Arrays
1. <!doctype html>
1. let shopping = ['bread', 'milk', 'cheese', 'eggs'];

2. let sequence = [1, 1, 2, 3, 5, 8, 13];

3. let random = ['tree', 795, [0, 1, 2]];

Arrays are generally described
as "list-like objects"; they are
basically single objects that
contain multiple values stored
in a list. We can access each
value inside the list individually,
and do useful and efficient
things with the list, like loop
through it and do the same
thing to every value.

Accessing and
modifying array
items

1. <!doctype html>
1. let shopping = ['bread', 'milk', 'cheese', 'eggs'];

2. shopping[0];

3. // returns "bread"

4. shopping[0] = 'noodles';

5. // shopping list will now contain

6. ["noodles", "milk", "cheese", "eggs"]

You can then access individual
items in the array using bracket
notation

Length of an array
1. <!doctype html>
1. let shopping = ['bread', 'milk', 'cheese', 'eggs'];

2. shopping.length;

3. // returns 4

You can find out the length of
an array (how many items are
in it)

Strings are arrays
1. <!doctype html>
1. let myString= 'Hello World!';

2. myString[0];

3. // returns ‘H’

4. myString.length;

5. // returns 12
Strings are an array of
characters

Conditionals

if ... else statements

1. <!doctype html>
1. if (condition) {

2. code to run if condition is true

3. }

4. else {

5. run some other code instead

6. }

1. <!doctype html>
1. let shoppingDone = false;

2. if (shoppingDone === true) {

3. let moneyForBeer = 10;

4. }

5. else {

6. let moneyForBeer = 0;

7. }

else ... if statements

1. <!doctype html>
1. let wifeAngerLevel = 10;

2. let haveEnoughMoney = false;

3. if (wifeAngerLevel > 9) {

4. let buyGift = 'Chocolate';

5. }

6. else if (wifeAngerLevel > 5) {

7. let buyGift = 'flowers';

8. }

9. else {

10. let buyGift = false;

11. if (haveEnoughMoney) {

12. let buyMyselfBeer = true;

13. }

14. }

Logical operators

1. <!doctype html>
1. if (choice == 'sunny' && temperature < 25) {

2. wearJacket()

3. }

4. else if (choice == 'sunny' || temperature >= 25) {

5. wearTshirt()

6. }

7. else if (!(choice == 'sunny' || temperature >= 0)){

8. wearTshirt()

9. }

● AND - &&
● OR - ||
● NOT - !

switch...case

1. <!doctype html>
1. switch (choice) {

2. case 'sunny':

3. wearTshirt();

4. break;

5. case 'rainy':

6. wearJacket();

7. break;

8. case 'snowing':

9. wearCoat();

10. break;

11. default:

12. stayHome();

13. }

Ternary operator

1. <!doctype html>
1. (condition) ? run this : run this instead

1. <!doctype html>
1. let number = (isEven) ? 'Even' : 'Odd';

Loops

Loops
● A counter, which is initialized with a certain value — this is

the starting point of the loop.

● An exit condition, which is the criteria under which the
loop stops — usually the counter reaching a certain value.

● An iterator, which generally increments the counter by a
small amount on each successive loop, until it reaches the
exit condition.

Loops
1. <!doctype html>

loop(food = 0; foodNeeded = 10) {

 if (food >= foodNeeded) {

 exit loop;

 }

 else {

 food += 2;

 }

}

Pseudo code

The standard for
loop

1. An initializer — this is
usually a variable set to a
number, which is
incremented to count the
number of times the loop has
run.

2. An exit-condition — this
defines when the loop should
stop looping.

3. A final-expression — this is
always evaluated (or run)
each time the loop has gone
through a full iteration.

1. <!doctype html>
1. const cats = ['Bill', 'Jeff', 'Jasmin'];

2. let info = 'My cats are called ';

3. for (let i = 0; i < cats.length; i++) {

4. info += cats[i] + ', ';

5. }

6. // My cats are called Bill, Jeff, Jasmin,

Exiting loop

If you want to exit a loop before all
the iterations have been completed,
you can use the break statement.

1. <!doctype html>
1. const cats = ['Bill', 'Jeff', 'Jasmin'];

2. let info = 'My cats are called ';

3. for (let i = 0; i < cats.length; i++) {

4. if (i == 1) {

5. break;

6. }

7. info += cats[i] + ', ';

8. }

9. // My cats are called Bill,

Skipping iterations

The continue statement works in
a similar manner to break, but
instead of breaking out of the loop
entirely, it skips to the next iteration
of the loop.

1. <!doctype html>
1. const cats = ['Bill', 'Jeff', 'Jasmin'];

2. let info = 'My cats are called ';

3. for (let i = 0; i < cats.length; i++) {

4. if (i == 1) {

5. continue;

6. }

7. info += cats[i] + ', ';

8. }

9. // My cats are called Bill, Jasmin,

while loop

This works in a very similar way to
the for loop, except that the
initializer variable is set before the
loop, and the final-expression is
included inside the loop after the
code to run

1. <!doctype html>
1. let i = 0;

2. while (i < cats.length) {

3. if (i == cats.length - 1) {

4. info += 'and ' + cats[i] + '.';

5. }

6. else {

7. info += cats[i] + ', ';

8. }

9. i++;

10. }

11. // My cats are called Bill, Jeff and Jasmin.

do...while loop

The differentiator here is that the
exit-condition comes after
everything else, wrapped in
parentheses and preceded by a
while keyword. In a do...while loop,
the code inside the curly braces is
always run once before the check is
made to see if it should be executed
again

1. <!doctype html>
1. let i = 0;

2. do {

3. if (i == cats.length - 1) {

4. info += 'and ' + cats[i] + '.';

5. }

6. else {

7. info += cats[i] + ', ';

8. }

9. i++;

10. }while (i < cats.length)

11. // My cats are called Bill, Jeff and Jasmin.

Errors

Error types

Syntax errors: These are spelling errors in your code that
actually cause the program not to run at all, or stop
working part way through — you will usually be provided
with some error messages too. These are usually okay
to fix, as long as you are familiar with the right tools and
know what the error messages mean!

Logic errors: These are errors where the syntax is
actually correct but the code is not what you intended it
to be, meaning that program runs successfully but gives
incorrect results. These are often harder to fix than
syntax errors, as there usually isn't a resulting error
message to direct you to the source of the error.

References https://developer.mozilla.org/en-US/

https://developer.mozilla.org/en-US/

Questions?
Next: Javascript Part II

