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Lecture 3. Newton Binomial. Inclusion-exclusion principle.

Newton Binomial

Example 1. We know the equalities:

(x+ y)1 = x+ y

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = (x+ y)(x2 + 2xy + y2) = x3 + 3x2y + 3xy2 + y3

What is (x+ y)n then? The answer is given by the following theorem.

Theorem. (Newton binomial.)

(x+ y)n =
n∑

i=0

(n

i

)

xiyn−i.

Proof. Write
(x+ y)n = (x+ y)(x+ y) · . . . · (x+ y)

︸ ︷︷ ︸

n times

.

Expanding this is essentially the same as choosing x or y in every parenthesis
and then summing up obtained terms1. After summation, how many times
do we obtain the term xiyn−i?

1For example, if n = 3 we have: (x + y)(x + y)(x + y) = xxx + xxy + xyx + xyy +
yxx+ yxy + yyx+ yyy = x

3 + 3x2
y + 3xy2 + y

3.
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• x comes from i multipliers;

• y comes from rest n− i multipliers.

(x+ y)(x+ y)(x+ y) . . . (x+ y)

xi yn−i

Number of ways to choose i multipliers out of n is
(
n

i

)
.

We saw in the practice session that

(n− 1

k − 1

)

+
(n− 1

k

)

=
(n

k

)

.

If we denote
(
n

0

)
= 1 for all n ≥ 0 and

(
n

k

)
= 0 if k < 0 or k > n, then we

can arrange all the binomial coefficients in infinite triangle table:
(
0

0

)

ւ ց
(
1

0

) (
1

1

)

ւ ց ւ ց
(
2

0

) (
2

1

) (
2

2

)

ւ ց ւ ց ւ ց
(
3

0

) (
3

1

) (
3

2

) (
3

3

)

. . . . . . . . . . . . . . . . . . .

Here every element is a sum of elements according to incoming arrows. Ele-
ments along the edges are all equal to 1. This table is called Pascal Triangle.
We can write exact numbers:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . . . . . . . . . . .

The n’th row in the triangle gives coefficients of (x + y)n. For instance,
(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Let us consider some important special cases. Assign y = 1, then we
have:

(1 + x)n =
n∑

i=0

(n

i

)

xi.
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Here assign x = 1:
n∑

i=0

(n

i

)

= 2n. (∗)

But if we assign x = −1, in the same manner we get:

n∑

i=0

(−1)i
(n

i

)

= 0. (∗∗)

From (∗∗) we get

∑

0≤i≤n,
odd i

(
n

i

)

=
∑

0≤i≤n,
even i

(
n

i

)

. (∗∗)

Comparing (∗) and (∗∗), we obtain:
(n

0

)

+
(n

2

)

+
(n

4

)

+ . . . =
(n

1

)

+
(n

3

)

+
(n

5

)

+ . . . = 2n−1.

Inclusion-exclusion principle

Example 2. There are 20 students in the class. 15 of them were in Italy and 8
were in China. 5 students were in both countries. How many of the students
were neither in Italy or China?

20 students

15 8

5were in
Italy

were in
China

Solution. We see that some of the students visited at least one country. 15
students were in Italy and 8 students were in China. This gives us in total
15 + 8 = 23 students. However, we know that there are 5 students that
visited both countries – we counted these students twice: once for Italy visit
and once for China visit. We need to subtract them:

20
︸︷︷︸

all the
students

− ( 15 + 8− 5
︸ ︷︷ ︸

were to at least
one of the countries

) = 2
︸︷︷︸

were to neither
of the countries
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This is exactly the number of students who were to at least one country.
Therefore the rest 2 students were to neither of the countries.

Example 3. There are 30 students in the class.

• 18 students play football. 15 students dance salsa. 8 students speak
French.

• 5 students play football and dance salsa.

• 6 students play football and speak French.

• 2 students play football, dance salsa and speak French.

How many students dance salsa and speak French, if 2 students don’t do any
of these three activities?

football salsa

French

30 students

5
18 15

2

6 x

8

2

Solution. From the picture we see the sizes of the sets of students doing these
activities. Therefore:

30− (18 + 15 + 8) + (6 + 5 + x)− 2 = 2 .

Inclusion-exclusion principle. We have n elements, possessing some of
the properties P1, P2, . . . , Pt. Denote

W (Pi) number of elements with property Pi, 1 ≤ i ≤ t

W (Pi, Pj) number of elements with properties Pi and Pj, 1 ≤ i, j ≤ t

. . . . . . . . . . . . . . . . . . . . .
W (P1, P2, . . . , Pt) number of elements with properties P1, P2, . . . , Pt

E(0) number of elements without any of these properties.
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Then

E(0) = n−
(
W (P1) +W (P2) + . . .+W (Pt)

)
+

+
(
W (P1, P2) +W (P1, P3) + . . .+W (Pt−1, Pt)

)
−

−
(
W (P1, P2, P3) +W (P1, P2, P4) + . . .+W (Pt−2, Pt−1, Pt)

)
+

+ . . .+ (−1)t W (P1, P2, . . . , Pt).

Proof. Consider arbitrary element x. Assume that x has exactly j ≥ 1
properties. Without loss of generality assume that these properties are P1,
P2, . . . , Pj.

The element x is counted by W (Pi1 , Pi2 , . . . , Pik) if and only if a set
{P1, P2, . . . , Pj} contains all of the properties Pi1 , Pi2 , . . . , Pik . There are
(
j

k

)
such choices of properties. The sign of the expression, when counting

k tuples of properties, is (−1)k. Therefore x contributes to the R.H.S. the
quantity:

1− j +
(j

2

)

−
(j

3

)

− . . .+ (−1)j
(j

j

)

.

From (∗∗) the above expression is 0. Thus the contribution of x to both sides
of the formula is 0. This is true for every x with j ≥ 1 properties.

Now, x with 0 properties contributes 1 to the L.H.S. and 1 to the R.H.S.
As a result, contribution of every x to the L.H.S. and R.H.S. is equal, and
hence the formula has been proven.

If we introduce the following notation:

W (0) = n

W (1) = W (P1) +W (P2) + . . .+W (Pt)

W (2) = W (P1, P2) +W (P1, P3) + . . .+W (Pt−1, Pt)

W (3) = W (P1, P2, P3) +W (P1, P2, P4) + . . .+W (Pt−2, Pt−1, Pt)

. . . . . . . . . . . . . . . . . . .

W (t) = W (P1, P2, . . . , Pt),

then inclusion-exclusion principle can be written shorter:

E(0) =
t∑

i=0

(−1)iW (i) .

Practise session

1. Prove
n∑

i=0

(n

i

)2

=
(2n

n

)

.
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2. Prove that
n∑

i=0

i
(n

i

)

= n · 2n−1.

3. Prove that
n∑

i=0

(i− 2)
(n

i

)

= 2n−1(n− 4).

4. There are 18 students in the class. 12 of them speak French, 7 speak Italian
and 5 speak Japanese. 5 of them speak Italian and French. 2 speak Italian
and Japanese. 1 speaks French and Japanese. And one student speak all
three languages. How many students don’t speak any of the three languages?

5. How many numbers between 1 and 100 are divisible neither by 2, or 3, or 7?
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Solutions to practise session questions

1. Prove
n∑

i=0

(n

i

)2

=
(2n

n

)

.

Solution 1. Since
(
n

i

)2
=
(
n

i

)(
n

i

)
=
(
n

i

)(
n

n−i

)
, our identity is equivalent to the

following one:
n∑

i=0

(n

i

)( n

n− i

)

=
(2n

n

)

.

Consider the following problem: we have n white balls numbered 1, 2, . . . , n
and n black balls numbered 1, 2, . . . , n. How many ways are there to choose
n balls out of these 2n balls?

Let us count in two different ways.
(a) Choose n balls out of 2n balls (all balls are different):

(
2n

n

)

.

(b) Let i be the number of chosen white balls, 0 ≤ i ≤ n. The number of
ways to choose i white balls out of n (different) white balls:

(
n

i

)
. The number

of ways to choose n− i black balls out of n (different) black balls:
(

n

n−i

)
. By

the multiplication principle, the total number of choices of i white and n− i

black balls:
(
n

i

)(
n

n−i

)
. Since any i, 0 ≤ i ≤ n is possible, we have to sum up:

n∑

i=0

(n

i

)( n

n− i

)

.

Comparing (a) and (b), we get required identity.

Solution 2. From Newton Binomial:

(x+ y)2n =
2n∑

i=0

(
2n

i

)

xiy2n−i .

(
2n

n

)
is a coefficient of xnyn in this binomial.

On the other hand,

(x+ y)2n = (x+ y)n(x+ y)n =

(
n∑

i=0

(
n

i

)

xiyn−i

)

︸ ︷︷ ︸

take xiyn−i

(
n∑

i=0

(
n

i

)

xiyn−i

)

︸ ︷︷ ︸

take xn−iyi

.
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xnyn is obtained by multiplying xiyn−i from the first sum by xn−iyi from
the second sum. The value of i could be anything between 0 and n. Hence,

n∑

i=0

(
n

i

)

︸︷︷︸

coefficient
of xi

in the left
multiplier

(
n

n− i

)

︸ ︷︷ ︸

coefficient
of xn−i

in the right
multiplier

=

(
2n

n

)

.

2. Prove that
n∑

i=0

i
(n

i

)

= n · 2n−1.

Solution. From the Newton Binomial:

(1 + x)n =
n∑

i=0

(n

i

)

xi .

This is true for all x ∈ R. Take a derivative of both sides:

n(1 + x)n−1 =
n∑

i=1

i
(n

i

)

xi−1.

(The term corresponding to i = 0 becomes 0.) Substitute x = 1:

n · 2n−1 =
n∑

i=1

i
(n

i

)

.

3. Prove that
n∑

i=0

(i− 2)
(n

i

)

= 2n−1(n− 4).

Solution. We know already that

n∑

i=0

(n

i

)

= 2n.

From the previous problem:

n∑

i=1

i
(n

i

)

= n · 2n−1
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Subtract them:
n∑

i=1

i
(n

i

)

− 2
n∑

i=0

(n

i

)

=
n∑

i=0

i
(n

i

)

−
n∑

i=0

2
(n

i

)

=
n∑

i=0

(i− 2)
(n

i

)

.

On the other hand:

n · 2n−1 − 2 · 2n = 2n−1(n− 4).

4. There are 18 students in the class. 12 of them speak French, 7 speak Italian
and 5 speak Japanese. 5 of them speak Italian and French. 2 speak Italian
and Japanese. 1 speaks French and Japanese. And one student speak all
three languages. How many students don’t speak any of the three languages?

Solution. Use inclusion-exclusion principle with the following properties con-
sidered: P1 = speaks French, P2 = speaks Italian, P3 = speaks Japanese. Let
us compute:

• W (0) = 18

• W (1) = W (P1) +W (P2) +W (P3) = 12 + 7 + 5 = 24

• W (2) = W (P1, P2) +W (P1, P3) +W (P2, P3) = 5 + 1 + 2 = 8

• W (3) = 1

Therefore

E(0) = W (0)−W (1) +W (2)−W (3) = 18− 24 + 8− 1 = 1.

5. How many numbers between 1 and 100 are divisible neither by 2, or 3, or 7?

Solution. Define properties: P1 = the number is divisible by 2, P2 = the
number is divisible by 3, P3 = the number is divisible by 7. Then:

• W (0) = 100.

• W (P1) = 50, W (P2) = 33, W (P3) = 14. Thus W (1) = W (P1) +
W (P2) +W (P3) = 97.

• W (P1, P2) =
⌊
100

6

⌋
= 16, W (P1, P3) = 7, W (P2, P3) = 4. Thus W (2) =

W (P1, P2) +W (P1, P3) +W (P2, P3) = 27.

• W (3) = W (P1, P2, P3) = 2.

Applying inclusion-exclusion principle:

E(0) = W (0)−W (1) +W (2)−W (3) = 100− 97 + 27− 2 = 28.
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Additional exercises

6. There is a grid of size n × n. In lower left knot point there are 2n buttons.
At the first move half of them move up and half move right. At the second
move half of the buttons at both new knot points move up and half move
right. n such moves are made. Where do the buttons lie after n moves and
how many buttons are there in each knot point of the grid?

7. Using the expansions of the expression (1 + x)n and its derivative, prove the
equality

n∑

i=1

i
(n

i

)2

=
n

2

(2n

n

)

.

8. Proove
n∑

i=0

(n+ i

n

)

=
(2n+ 1

n+ 1

)

.

9. In how many ways can the letters A, B, . . . , H be arranged, such that the
resulting word does not contain letter combinations AB, CD, EF, and GH?

10. Six people come to visit and everybody hangs his hat on the rack in the
vestibule. Later, when they prepare to leave, suddenly the light goes off and
everybody takes one hat from the rack in darkness. In how many ways can
the visitors take the hats such that nobody gets his own hat?

Hints and answers. 6. Pascal’s triangle. 7. Find the coefficient of appropriate
term in the product of this expression with its derivative. 8. Among elements
1, 2, . . . , 2n + 1 consider the element with the largest number that belongs
to the selection. 9. 24024. 10. 265.
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