The method of proof that we used for showing that HALT is undecidable is called “reduction from L_{TM}”:

\[
L_{TM} \leq_M \text{HALT}
\]

can decide \iff can decide

HALT is at least as hard as L_{TM}.

Definition. Function $f : \Sigma^* \to \Sigma^*$ is a computable function if some Turing machine M on every input w halts with just $f(w)$ on its tape.

Definition. Language A is mapping reducible to language B, written $A \leq_M B$, if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w

\[
w \in A \iff f(w) \in B.
\]

The function f is called the reduction from A to B.

![Diagram](attachment://diagram.png)
Theorem. If $L_A \leq_M L_B$ and L_B is decidable, then L_A is decidable too.

Proof. Let M_B be a Turing machine that decides L_B and f be a reduction from L_A to L_B. We describe a machine M_A that decides L_A:

1. On input w compute $f(w)$;
2. Run M_B on $f(w)$ and output what M_B outputs.

M_A decides language L_A indeed:

- If $w \in A$, then $f(w) \in B$, since f is reduction. M_B accepts $f(w)$ – therefore M_A accepts w.
- If $w \notin A$, then $f(w) \notin B$. M_B rejects $f(w)$ and therefore M_A rejects w. \qed

Polynomiality

Definition. Let M be a deterministic Turing machine that halts on all inputs. The running time (time complexity) of M is the function $f : \mathbb{N} \to \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n.

- $f(n)$ is the running time of M.
- Usually n is the length of the input.

Definition. Let $f, g : \mathbb{N} \to \mathbb{R}^+$. We say that $f(n) = O(g(n))$, if there are $C > 0$ and an integer n_0 such that for all $n > n_0$:

$$f(n) < C g(n).$$

Example 1.

- If $f(n) = n + 10$, $g(n) = n^2$, then $f(n) = O(g(n))$, because if $n > 3$, then $n + 10 < n^2$. So we can take $C = 1$ and $n_0 = 3$.
- If $f(n) = 5n^3 + 2n^2 + 7n + 10$ and $g(n) = n^3$, then $f(n) = O(g(n))$. We can take $C = 6$ or $n_0 = 4$, or we can take $C = 100$ and $n_0 = 0$. As you see, the choice of C and n_0 is not unique.
- If $f(n) = 10n^2 + 100n + 10$ and $g(n) = 2^n$, then $f(n) = O(g(n))$.
- If $f(n) = \log_2 n$ and $g(n) = \sqrt{n}$, then $f(n) = O(g(n))$.

2
Since \(\log_a n = \log_b b \cdot \log_b n \), then the basis of the logarithm is not important under \(O \)-notation (except exotic cases) and we simply write \(O(\log n) \).

Definition. Let \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \). We say that \(f(n) = o(g(n)) \), if
\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.
\]

Example 2.
- \(\sqrt{n} = o(n) \)
- \(\log n = o(n^{\frac{1}{100}}) \)
- \(n \log n = o(n^2) \)
- \(n^{100} = o(2^n) \)

Classes P and NP

For the following discussion, we do not distinguish between different polynomial complexities. However, we distinguish between polynomial and exponential time complexities. Different reasonable deterministic computational models are polynomially equivalent.

Definition. \(P \) is a class of languages, whose time complexity is \(f(n) = O(p(n)) \), where \(p \) is some polynomial in \(n \).

\(P \) is invariant for all models of computation that are polynomially equivalent to the single-tape deterministic Turing machine. \(P \) roughly corresponds to the class of problems that are polynomially solvable on a computer.

Example 3. The following languages are in \(P \).

- Any regular language.
- Given an array, find whether it is monotonically non-decreasing.
-
 \[L_G = \{ \langle G, s, t, k \rangle \mid \text{shortest path in graph } G \text{ from } s \text{ to } t \text{ has length } k \} \].

Definition. \(NP \) is the class of languages which are decided by some non-deterministic polynomial-time Turing machine.
Example 4. A clique in a graph is a sub-graph, where every two nodes are connected by an edge. Then language

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with clique of size } k \} \]

Let us show that CLIQUE \(\in \text{NP} \).

On input \(\langle G, k \rangle \), the nondeterministic Turing machine does the following:

1. Nondeterministically selects a subset \(S \) of \(k \) nodes in \(G \).
2. Checks whether \(G \) contains all the edges between pairs of nodes in \(S \).
3. If yes – accepts, if not – rejects.

Trivially, \(\text{P} \subseteq \text{NP} \). CLIQUE is an example of a problem, which is in \(\text{NP} \), but it is not known if it is in \(\text{P} \). It is know at all if \(\text{P} = \text{NP} \), in other words it is not know if there exists problem which is in \(\text{NP} \) but not in \(\text{P} \).

An \(\text{NP} \)-complete problem: if there exists a polynomial-time deterministic algorithm for that problem, then there exists a polynomial-time deterministic algorithm for any problem \(\text{NP} \) (i.e \(\text{P} = \text{NP} \)).
Practise session

1. Let

\[\text{REGULAR} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is a regular language} \} \]

Prove that REGULAR is undecidable.

Solution. We show reduction:

\[L_{TM} \leq_M \text{REGULAR}. \]

Assume that REGULAR is decidable, and let \(M_R \) be a Turing machine that decides REGULAR. We construct Turing machine \(M_L \) that decides \(L_{TM} \). On the input \(\langle M, w \rangle \), \(M_L \) does the following:

1. Constructs machine \(M_0 \), which on input \(x \) does the following:
 - (a) if \(x \) is of the form \(0^n1^n \) – accepts;
 - (b) if \(x \) is not of the form \(0^n1^n \), run \(M \) on input \(w \) and accept if and only if \(M \) accepts.
2. Runs \(M_R \) on input \(\langle M_0 \rangle \).
3. If \(M_R \) accepts – accept, if \(M_R \) rejects – reject.

What is the language of \(M_0 \)?

- If \(M \) accepts \(w \), then \(L(M_0) = \Sigma^* \). This is regular language.
- If \(M \) does not accept \(w \), then \(L(M_0) = \{ 0^n1^n \mid n \geq 0 \} \). This is non-regular language.

Therefore:

- if \(M \) accepts \(w \) then \(L(M_0) = \Sigma^* \) and \(M_R \) accepts \(\langle M_0 \rangle \) in Step 2. Therefore \(M_L \) accepts.
- If \(M \) does not accept \(w \) then \(L(M_0) \) is irregular and \(M_R \) rejects \(\langle M_0 \rangle \) in Step 2. Therefore, \(M_L \) rejects.

So \(M_L \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \).

Note. All steps are computable by the Turing machines. In particular, constructing \(M_0 \) is possible: first \(M_0 \) checks for certain type of input and then simulates \(M \) on \(w \).

Conclusion. We found that if there exists \(M_R \) (the machine that decides REGULAR), then there exists \(M_L \) (the machine that decides \(L_{TM} \)). Not possible. Contradiction!
2. True or false?

(a) \(n = o(2n) \)

(b) \(3n^5 = O(10n^3 + 20n^2 + 100) \)

(c) \(2^n = o(3^n) \)

(d) \(n^2 = O(n \log n) \)

Solution.

(a) False: \(\lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \neq 0 \).

(b) False: for any \(n_0 \) and \(C > 0 \) there exists arbitrary large \(n \geq \max\{n_0 + 1, 1000C\} \), such that \(n > n_0 \) and \(3n^5 > C(10n^3 + 20n^2 + 100) \).

(c) True: \(\lim_{n \to \infty} \frac{n}{2^n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0 \).

(d) False: since \(\lim_{n \to \infty} \frac{n^2}{n \log n} = \lim_{n \to \infty} \frac{n}{\log n} = \infty \), then for any constant \(C > 0 \) there exists \(n \) such that \(f(n) > C g(n) \).

3. Let \(t(n) \) be a function, where \(t(n) \geq n \). Show that every \(t(n) \)-time multitape Turing machine has an equivalent \(O(t^2(n)) \)-time single-tape machine.

Solution. We saw earlier in the course how to convert multitape machine into an equivalent single-tape machine. Now, we show that simulating each step of the multitape machine takes at most \(O(t(n)) \) steps of a single-tape machine.

Recall that initially the single-tape machine \(M_S \) puts on its tape the content of all tapes of the multi-tape machine \(M_M \). To perform one step, \(M_S \) scans all the tape content to determine the symbols under the heads of \(M_M \). Then, \(M_S \) makes another pass to write the new tape content. If one of the heads of \(M_M \) moves rightwards from the last non-blank symbol, \(M_S \) should shift the content of the tape one position to the right.

- What is the maximal number of steps for one scan? Since \(M_M \) makes \(O(t(n)) \) steps in total, the total length of the active part of the tape of \(M_S \) if of length \(O(t(n)) \). Hence each scan of the tape by \(M_S \) takes \(O(t(n)) \) time.

- To simulate each step of \(M_M \), \(M_S \) performs two scans and possibly one shift to the right. Each such operation (scan/shift) takes at most \(O(t(n)) \).
The total time needed for simulation of M_M by M_S:

- initialisation of the tape: $O(t(n))$;
- simulation of each of $t(n)$ steps of M_M by M_S: $t(n) \cdot O(t(n)) = O(t^2(n))$.

Total time: $O(t^2(n)) + O(t(n))$.

Since $O(t(n)) \geq O(n)$ (otherwise, M_M cannot even read all its input), we obtain that the total time complexity is $O(t^2(n))$.

4. Define the language:

$$PATH = \{(G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t\}.$$

For example:

```
  o---o   o
 |   |   /|
 |   |  / \\
 s   o --- o
     |   |   \
     o---o---o
      |   |   |
      |   |   |
      v   v   v
       t
```

Prove that $PATH \in P$.

Solution. Consider the following algorithm M for $PATH$, which on input (G, s, t) does the following:

1. Marks node s.
2. Repeats the following:
 - scans the edges (u, v) in graph G; if u is marked and v is not marked – mark v.
3. If t is marked – accept, otherwise – reject.

Correctness. If there is a path $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_{l-1} \rightarrow v_l = t$, then by induction on i, the node v_i will be marked. If there is no path from s to t, the there is no way to mark t.

Complexity. Step 1 takes polynomial time. Let m be a number of nodes in G. Then Step 3 is executed at most m times (because each time we mark at least one node). Each of the steps 1–4 requires polynomial time complexity. Therefore, the total complexity is polynomial.