Undecidable languages

Define:

\[L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \} \]

Theorem. \(L_{TM} \) is undecidable.

Note. We present a proof based on a technique called “diagonalisation”.

Proof. We prove by contradiction. Assume, that there exists a Turing machine \(H \), where

\[
H(\langle M, w \rangle) = \begin{cases}
\text{accepts,} & \text{if } M \text{ accepts } w, \\
\text{rejects,} & \text{if } M \text{ does not accept } w \text{ (either rejects or loops).}
\end{cases}
\]

Now we construct a new machine \(D \), which uses \(H \) as a subroutine. On input \(\langle M \rangle \), \(D \) does the following:

1. Runs \(H \) on input \(\langle M, \langle M \rangle \rangle \).

2. Outputs the opposite of what \(H \) outputs. That is, if \(H \) accepts – \(D \) rejects; if \(H \) rejects – \(D \) accepts.
In summary,

\[D(\langle M \rangle) = \begin{cases}
\text{accepts,} & \text{if } M \text{ does not accept } \langle M \rangle, \\
\text{rejects,} & \text{if } M \text{ accepts } \langle M \rangle.
\end{cases} \]

Question: what happens when we run \(D \) with its own encoding \(\langle D \rangle \) as an input? In this case

\[D(\langle D \rangle) = \begin{cases}
\text{accepts,} & \text{if } D \text{ does not accept } \langle D \rangle, \\
\text{rejects,} & \text{if } D \text{ accepts } \langle D \rangle.
\end{cases} \]

No matter what \(D \) is supposed to do, it does the opposite. Contradiction. Therefore such \(H \) does not exist.

We will show that there exist languages, which are not even Turing-recognisable.

Definition. A language \(L \) is called co-Turing recognisable if it is the complement of a Turing-recognisable language.

Theorem. A language \(L \) is decidable if and only if it is Turing-recognisable and co-Turing recognisable.

Proof. (1) If \(L \) is decidable, the it is clearly also recognisable. Moreover, its complement is also Turing-recognisable (construct Turing-machine \(M \) that simulates the machine \(M_L \) that decides \(L \), \(M \) rejects if and only if \(M_L \) accepts).

(2) Assume that \(L \) and \(\bar{L} \) (complement of \(L \)) are Turing recognisable. Let \(M_L \) be a machine that recognises \(L \) and \(M_{\bar{L}} \) be a machine that recognises \(\bar{L} \). The following machine \(M \) decides \(L \) then.

Machine \(M \):

1. Runs both \(M_L \) and \(M_{\bar{L}} \) on input \(w \) in parallel.

2. If \(M_L \) accepts – accepts, if \(M_{\bar{L}} \) accepts – rejects.

(Running in parallel means that \(M \) simulates one step of \(M_L \) after one step of \(M_{\bar{L}} \), etc.)

Now we show that \(M \) indeed decides \(L \). Any string \(w \) is either in \(L \) or in \(\bar{L} \). Therefore, either \(M_L \) or \(M_{\bar{L}} \) accepts \(w \). \(M \) always halts since at least one of the machines halts. If \(w \in L \) then \(M_L \) accepts and so \(M \) accepts. If \(w \in \bar{L} \) then \(M_{\bar{L}} \) accepts and so \(M \) rejects.

Corollary. Language \(L_{TM} \) is not Turing-recognisable.
Proof. If L_{TM} were Turing-recognisable, then (since L_{TM} is Turing-recognisable) L_{TM} would be Turing-decidable. Contradiction.

Define the language:

$HALT = \{⟨M, w⟩ | M \text{ is a Turing machine and } M \text{ halts on input } w\}$.

Theorem. $HALT$ is undecidable.

Proof. For the sake of contradiction, assume that $HALT$ is decidable. We will show that from this assumption it follows that L_{TM} is decidable.

Assume that M_H is a Turing machine that decides $HALT$. We use M_H to construct M_L, which will decide L_{TM}. On input $⟨M, w⟩$ machine M_L does the following:

1. Runs M_H on input $⟨M, w⟩$. Since we assumed $HALT$ to be decidable, M_H always halts.
2. If M_H rejects $- M_L$ rejects.
3. If M_H accepts $- M_L$ simulates M on w until it halts.
4. If M accepted w $- M_L$ accepts, if M rejected w $- M_L$ rejects.

If M accepts w then M_L will accept $⟨M, w⟩$. If M rejects w or if M runs infinitely long on w, M_L will reject $⟨M, w⟩$. Therefore, M_L decides L_{TM}. Contradiction!

This method of proof is called “reduction from L_{TM}”:

$$L_{TM} \leq_M HALT$$

can decide \iff can decide

$HALT$ is at least as hard as L_{TM}.

Practise session

1. Define the language

$L_{k,STR} = \{⟨A, k⟩ | A \text{ is a DFA and } L(A) \text{ consists of exactly } k \text{ strings, } k \in \mathbb{N}\}$.

Prove that $L_{k,STR}$ is decidable.
Proof. We construct a TM M, which decides $L_{k\text{-STR}}$. On the input $\langle A, k \rangle$, M does the following.

1. Checks the number of states of A. Denote this number by p.
2. Constructs a DFA B, that accepts all strings of length p or longer. Also constructs a DFA C, such that $L(C) = L(A) \cap L(B)$.
3. Generates all strings of length $\leq p - 1$ and tests whether each string is accepted by A. Counts the number of such strings, denote this number by c_A.
4. Tests whether $L(C) = \emptyset$.
5. If $L(C) = \emptyset$ and $c_A = k$ – accepts, otherwise – rejects.

Let us show that M does what we want.

- First, note that due to the pumping lemma, if A accepts any string of length $\geq p$, then it accepts infinitely many strings. This condition is tested by testing if $L(C) = \emptyset$.
- Provided A does not accept any strings of length $\geq p$, c_A is exactly the cardinality of $L(A)$. Thus M accepts if and only if $|L(A)| = k$. \hfill \Box

2. Define

$$L_\emptyset = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}.$$

Show that L_\emptyset is undecidable.

Solution. We show reduction from L_{TM} to L_\emptyset where

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \},$$

which is known to be undecidable. Reduction:

$$L_{TM} \leq_M L_\emptyset$$

decidable \iff decidable

Let M_{\emptyset} be a Turing machine that decides language L_\emptyset. We use it to construct Turing machine M_L that decides L_{TM}.

Given Turing machine M, construct Turing machine M_w that rejects any input except w, but on input w it works as before (i.e. simulates M on w).
If M accepts w then M_w accepts w. If M does not accept w, then M_w does not accept w:

$$L(M_w) = \begin{cases} \{w\}, & \text{if } M \text{ accepts } w \\ \emptyset, & \text{if } M \text{ does not accept } w. \end{cases}$$

Machine M_w is formally defined as follows:

1. If input is not w, then M_w rejects.
2. If input is w, then M_w simulates M on w and answers accordingly.

Now, we construct Turing machine M_L as follows. On the input $\langle M, w \rangle$, M_L does the following:

1. Constructs a Turing machine M_w as described above.
2. Runs M_\emptyset on $\langle M_w \rangle$ (i.e. on description of M_w).
3. If M_\emptyset accepts – reject, if M_\emptyset rejects – accept.

Let us show that M_L is correct.

- If M accepts w then M_w accepts w. Therefore $L(M_w) \neq \emptyset$ and therefore in Step 2, M_\emptyset rejects $\langle M_w \rangle$. Therefore, M_L accepts $\langle M, w \rangle$.

- If M does not accept w, then M_w does not accept w. M_w also does not accept any other input. Therefore, $L(M_w) = \emptyset$. Therefore, in Step 2, M_\emptyset accepts $\langle M_w \rangle$. And, hence, M_L rejects $\langle M, w \rangle$.

Conclusion. We constructed M_L, the Turing machine that decides L_{TM}. This is impossible. Contradiction!

Note. The machine M_L should be able to construct M_w from M. However, M_w works exactly as M, except that in the beginning it checks that the input is exactly w. This can be easily done algorithmically.

3. Define

$$L_{EQ} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}.$$

Show that L_{EQ} is undecidable.

Solution. We perform reduction:

$$L_{\emptyset} \leq_M L_{EQ}.$$

For the sake of contradiction, assume that M_{EQ} is a Turing machine that decides L_{EQ}. We construct a machine M_\emptyset that decides L_{\emptyset}.

The machine M_\emptyset does the following on input $\langle M \rangle$:
1. Runs M_{EQ} on input (M, M_1), where M_1 is the machine that rejects all inputs.

2. If M_{EQ} accepts – accept, if M_{EQ} rejects – reject.

Let us show that M_\varnothing is correct.

- If $L(M) = \emptyset$, then $L(M) = L(M_1)$ and hence M_{EQ} accepts and M_\varnothing accepts.

- If $L(M) \neq \emptyset$ then $L(M) \neq L(M_1)$, thus M_{EQ} rejects and M_\varnothing rejects.

We constructed machine M_\varnothing that decides L_\varnothing. Contradiction! Therefore the assumption that L_{EQ} is decidable was wrong.