Myhill-Nerode theorem proves another property of all regular languages. Analogously to the pumping lemma, we can use this property to prove that a language is not regular. But first we need to give some definitions.

Definition. Let x and y be two strings and L be a language (not necessarily regular). We say that x and y are distinguishable by L if there exists such a string z that exactly one string of xz and yz belongs to L. Otherwise we call x and y indistinguishable by L.

Definition. Let X be a set of strings and L be a language (not necessarily regular). We say that the set X is pairwise distinguishable by L if every two distinct strings in X are distinguishable by L.

Definition. Index of a language L is the maximum number of elements in any set that is pairwise distinguishable by L.

To prove the Myhill-Nerode theorem, we will need two lemmas.

Lemma A. If L is recognised by a DFA with k states, then L has index at most k.

Proof. We will prove by contradiction.

Let M be a DFA with k states that recognise L. Suppose that index of L is greater than k. Then there is a set X with more than k elements such that X is pairwise distinguishable by L.

Since M has only k states, there exist two distinct strings $x_1, x_2 \in X$ such that $\delta(q_0, x_1) = \delta(q_0, x_2)$. That is, after reading x_1 or x_2, M is in the
same state. Then $\delta(q_0, x_1z) = \delta(q_0, x_2z)$ for any string z, i.e. M is in the same state after reading x_1z or x_2z. Therefore x_1z and x_2z are either both accepted or both rejected by M for any string z. This means x_1 and x_2 are indistinguishable by L. Contradiction!

Therefore the assumption was wrong and index of L is not more than k.

Lemma B. If index of a language L is a finite number k then L is recognised by a DFA with k states.

Proof. Let $X = \{x_1, x_2, \ldots, x_k\}$ be pairwise distinguishable by L. We construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognises L.

Let $Q = \{q_1, q_2, \ldots, q_k\}$. For each $q_i \in Q$ and $a \in \Sigma$ we define: $\delta(q_i, a) = q_j$ where j is such that $x_i a$ is indistinguishable from x_j. Such x_j exists and is unique.

Indeed, $x_i a$ should be indistinguishable from some x_j because otherwise we could increase the set X by adding $x_i a$ and that would contradict the fact that the index of L is k. Such x_j is also unique because otherwise there would be indistinguishable strings in X.

Let $F = \{q_i \mid x_i \in L\}$ and $q_0 = q_j$ such that ϵ is indistinguishable from x_j.

Automaton M is constructed in the way that for any q_i:

$$\{x \mid \delta(q_0, x) = q_i\} = \{\text{strings indistinguishable from } x_i\}.$$

Every string y is indistinguishable from some $x_i \in X$ (otherwise we could include this y in X which contradicts that index of X is k). Having fixed y and x_i, consider all strings z: for any z two strings yz and x_iz are either both belong to L or none of them belong to L (because y and x_i are indistinguishable by L).

It is also true for any particular z, for example $z = \epsilon$. It means that if $y \in L$ than $x_i \epsilon = x_i \in L$ and the automaton M finishes in an accept state. But if $y \notin L$ then $x_i \notin L$ and the automaton M finishes in non-accept state. Therefore M accepts exactly strings from L.

Myhill-Nerode theorem. Language L is regular if and only if it has a finite index. Moreover, its index is the size of the smallest DFA that recognises L.

Proof. Suppose that L is regular. Let k be the number of states in DFA that recognises L. Then, from lemma A, L has index at most k.

Conversely, if L has index k, from lemma B there exists DFA that recognises it; and this DFA has k states, and thus L is regular.
Next, we show that the index of L the size of the smallest DFA accepting it. Suppose that the index of L is exactly k. Then, by lemma B, there is a k-state DFA accepting L. If there were a smaller DFA accepting L, we could show by lemma A that the index of L is smaller than k.

Practise session

Since it is the last week of part 2, we solve here some problems on different topics.

1. Show that $L = \{1^{2^n} \mid n \geq 0 \}$ is not regular. (It a set of all strings of ones of length 2^n for $n \geq 0$.)

2. Let L be the language of all strings consisting of some positive number of zeros, followed by some string twice, followed by some positive number of zeros:
$$L = \{0^k w 0^m \mid k, m \geq 1, w \in \{0,1\}^*\}.$$

For example,
$$0000 10101 \underbrace{10101}_{w} \underbrace{00}_{w} \in L$$

Show that L is not regular.

3. Let $C_5 = \{x \mid x$ is a binary number that is multiple of 5 $\}$. Show that C_5 is regular.

4. Are the following statements true or false?

 (a) If $L_1 \cup L_2$ is regular and L_1 is finite, then L_2 is regular.

 (b) If $L_1 \cup L_2$ is regular and L_1 is regular, then L_2 is regular.

 (c) If $L_1 L_2$ is regular and L_1 is regular, then L_2 is regular.

 (d) If L^* is regular then L is regular.
Solutions to the practice session questions

Since it is the last week of part 2, we solve here some problems on different topics.

1. Show that \(L = \{1^{2^n} \mid n \geq 0\} \) is not regular. (It a set of all strings of ones of length \(2^n \) for \(n \geq 0 \).)

Solution. We will use a pumping lemma (see previous lecture for details).

Assume that \(L \) is regular and \(p \) is its pumping length give by the pumping lemma. Choose \(w = 1^{2p} \). Clearly, \(w \in L \) and \(|w| \geq p \). Therefore \(w = xyz \), where \(|xy| \leq p \), \(|y| > 0 \) and for all \(i \geq 0 \) we have \(xy^i z \in L \).

Since \(p < 2^p \) for any \(p \geq 0 \), so \(|y| < 2^p \). Thus \(|xyyz| = |xyz| + |y| < 2^p + 2^p = 2^{p+1} \). That is why

\[
2^p < |xyyz| < 2^{p+1}
\]

and the length of the word \(xyyz \) is not a power of 2. It means that \(xyyz \not\in L \). Contradiction. Therefore \(L \) is not regular.

2. Let \(L \) be the language of all strings consisting of some positive number of zeros, followed by some string twice, followed by some positive number of zeros:

\[
L = \{0^k w0^m \mid k, m \geq 1, \ w \in \{0, 1\}^*\}.
\]

For example,

\[
\underline{0000} \underline{10101} \underline{10101} \underline{00} \in L
\]

Show that \(L \) is not regular.

Solution. We will use Myhill-Nerode’s theorem. More precisely, we show that there is an infinite set of strings, such that any two of them are distinguishable with respect to \(L \). This means that index of \(L \) is infinite and \(L \) is not regular.

Consider the set \(\{01^k 0 \mid k \geq 1\} \). Choose two arbitrary words from this set, \(01^{k_1} 0 \) and \(01^{k_2} 0 \) where \(k_1 \neq k_2 \). Let \(z = 1^{k_1} 00 \). On the one hand, \(01^{k_1} 0z = 01^{k_1} 01^{k_1} 00 \) obviously belongs to \(L \).

On the other hand, \(01^{k_2} 0z = 01^{k_2} 01^{k_1} 00 \). If it is in \(L \), then it is of the form \(0^k w0^m \) for some \(w \). Then, \(w \) should contain at least one zero. Then, \(w \) should end with zero, and so it is \(0ww0 \). Then, \(w \) should be \(1^{k_1} \) and \(1^{k_2} \) at the same time. It is impossible. So all strings from the set \(\{01^k 0 \mid k \geq 1\} \) are distinguishable, and the index of \(L \) is infinity, i.e. it is not regular.

3. Let \(C_5 = \{x \mid x \text{ is a binary number that is multiple of } 5 \} \). Show that \(C_5 \) is regular.
Solution. We construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognises C_5. Let $Q = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{0, 1\}$, $F = \{q_0\}$, start state be q_0 and transition function be

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_2</td>
<td>q_4</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_4</td>
<td>q_3</td>
<td>q_4</td>
</tr>
</tbody>
</table>

State diagram of this automaton is as follows

![State diagram of DFA](image)

The state of the automaton stores the reminder of currently read input divided by 5: states q_0, \ldots, q_4 correspond to reminders 0, \ldots, 4, respectively (so q_0, i.e. reminder 0, is accept state).

If the number that we read so far is x with remainder $x \mod 5 = r$ and we read one more digit:

<table>
<thead>
<tr>
<th>read number</th>
<th>remainder</th>
<th>remainders (respectively)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$x \mapsto 2x$</td>
<td>$r \mapsto 2r \mod 5$ $(0, 1, 2, 3, 4) \mapsto (0, 2, 4, 1, 3)$</td>
</tr>
<tr>
<td>1</td>
<td>$x \mapsto 2x + 1$</td>
<td>$r \mapsto (2r + 1) \mod 5$ $(0, 1, 2, 3, 4) \mapsto (1, 3, 0, 2, 4)$</td>
</tr>
</tbody>
</table>

According to respective change of remainders we build the transition function. For example, if we have a number with binary representation x with remainder\(^1\) 3 and we read 1, then the new number will have binary representation $x1$ and remainder $(3 \cdot 2 + 1) \mod 5 = 7 \mod 5 = 2$; hence we put arrow $q_3 \to q_2$ with label “1”.

Let us see for instance how the automaton works on input 11110 (i.e. binary representation of 30):

<table>
<thead>
<tr>
<th>input value</th>
<th>1</th>
<th>11</th>
<th>111</th>
<th>1111</th>
<th>11110</th>
</tr>
</thead>
<tbody>
<tr>
<td>input value</td>
<td>= 3</td>
<td>= 7</td>
<td>= 15</td>
<td>= 30</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Note that exact x is not important; it is only a remainder that matters.
4. Are the following statements true or false?

(a) If \(L_1 \cup L_2 \) is regular and \(L_1 \) is finite, then \(L_2 \) is regular.

(b) If \(L_1 \cup L_2 \) is regular and \(L_1 \) is regular, then \(L_2 \) is regular.

(c) If \(L_1L_2 \) is regular and \(L_1 \) is regular, then \(L_2 \) is regular.

(d) If \(L^* \) is regular then \(L \) is regular.

Solution.

(a) True. Note that
\[L_2 = (L_1 \cup L_2) \cap (L_1 \setminus L_2)^c, \]
where \(^c\) stand for complementary language. \(L_1 \cup L_2 \) is regular (given), \(L_1 \setminus L_2 \) is regular (every finite language is regular) and \((L_1 \setminus L_2)^c\) is regular as complementary to regular \(^2\). Therefore \(L_2 \) is an intersection of two regular languages and thus regular itself.

(b) False. Consider \(L_1 = \Sigma^* \) and \(L_2 \) being any nonregular language. Then \(L_1 \cup L_2 = \Sigma^* \) is regular but \(L_2 \) is not.

(c) False. Let \(L_1 = \{ \varepsilon, 0 \} \). This is a finite language and thus regular. Let
\[L_2 = (00)^* \cup \{ 0^n^2 \mid n \geq 0, n \text{ is prime} \}. \]
It could be shown this language is not regular. However \(L_1L_2 = 0^* \) is regular.

(d) False. Let \(L = \{ 0^n1^n \mid n \geq 0 \} \cup \{ 0, 1 \} \). This language is not regular (could be proven analogously to example 1 in lecture 8). But \(L^* = \Sigma^* \) is regular.

\(^2\)To see that complementary to a regular language \(L \) is also regular, we note that from DFA for \(L \) we build DFA for \(L^c \) by just making all accept states be non-accept, and vice versa.