Definition. Let M be a deterministic Turing machine that halts on all inputs. The running time (time complexity) of M is the function $f: \mathbb{N} \to \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n.

- $f(n)$ is the running time of M.
- Usually n is the length of the input.

Definition. Let $f, g: \mathbb{N} \to \mathbb{R}^+$. We say that $f(n) = O(g(n))$, if there are $C > 0$ and an integer n_0 such that for all $n > n_0$:

$$f(n) < C g(n).$$

Example 1.

- If $f(n) = n + 10$, $g(n) = n^2$, then $f(n) = O(g(n))$, because if $n > 3$, then $n + 10 < n^2$. So we can take $C = 1$ and $n_0 = 3$.

- If $f(n) = 5n^3 + 2n^2 + 7n + 10$ and $g(n) = n^3$, then $f(n) = O(g(n))$. We can take $C = 6$ or $n_0 = 4$, or we can take $C = 100$ and $n_0 = 0$. As you see, the choice of C and n_0 is not unique.

- If $f(n) = 10n^2 + 100n + 10$ and $g(n) = 2^n$, then $f(n) = O(g(n))$.

- If $f(n) = \log_2 n$ and $g(n) = \sqrt{n}$, then $f(n) = O(g(n))$.

1
Since \(\log_a n = \log_a b \cdot \log_b n \), then the basis of the logarithm is not important under \(O \)-notation (except exotic cases) and we simply write \(O(\log n) \).

Definition. Let \(f, g : \mathbb{N} \to \mathbb{R}^+ \). We say that \(f(n) = o(g(n)) \), if

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.
\]

Example 2.
- \(\sqrt{n} = o(n) \)
- \(\log n = o(n^{1/100}) \)
- \(n \log n = o(n^2) \)
- \(n^{100} = o(2^n) \)

Classes \(P \) and \(NP \)

For the following discussion, we do not distinguish between different polynomial complexities. However, we distinguish between polynomial and exponential time complexities. Different reasonable deterministic computational models are polynomially equivalent.

Definition. \(P \) is a class of languages, whose time complexity is \(f(n) = O(p(n)) \), where \(p \) is some polynomial in \(n \).

\(P \) is invariant for all models of computation that are polynomially equivalent to the single-tape deterministic Turing machine. \(P \) roughly corresponds to the class of problems that are polynomially solvable on a computer.

Example 3. The following languages are in \(P \).
- Any regular language.
- Given an array, find whether it is monotonically non-decreasing.
- \(L_G = \{ \langle G, s, t, k \rangle \mid \text{shortest path in graph } G \text{ from } s \text{ to } t \text{ has length } k \} \).

Definition. \(NP \) is the class of languages which are decided by some non-deterministic polynomial-time Turing machine.
Example 4. A clique in a graph is a sub-graph, where every two nodes are connected by an edge. Then language

$$\text{CLIQUE} = \{\langle G, k \rangle \mid G \text{ is an undirected graph with clique of size } k\}.$$

Let us show that $\text{CLIQUE} \in \text{NP}$.

On input $\langle G, k \rangle$, the nondeterministic Turing machine does the following:

1. Nondeterministically selects a subset S of k nodes in G.
2. Checks whether G contains all the edges between pairs of nodes in S.
3. If yes – accepts, if not – rejects.

Trivially, $P \subseteq \text{NP}$. CLIQUE is an example of a problem, which is in NP, but it is not known if it is in P. It is not known if $P = \text{NP}$, in other words it is not known if there exists problem which is in NP but not in P.

An NP-complete problem: if there exists a polynomial-time deterministic algorithm for that problem, then there exists a polynomial-time deterministic algorithm for any problem NP (i.e $P=\text{NP}$).
Polynomial reductions

Definition. A function $f : \Sigma^* \to \Sigma^*$ is called a polynomial-time computable if there exists a Turing machine M that halts with just $f(w)$ on its tape with running time being polynomial in $|w|$, where w is input.

Definition. A language L_A is polynomial-time mapping reducible to a language L_B, if there exists a polynomial-time mapping reducible function $f : \Sigma^* \to \Sigma^*$, where for each w

$$w \in L_A \iff f(w) \in L_B.$$

Denoted: $L_A \leq_P L_B$.

Function f is called a polynomial-time reduction of L_A to L_B.

![Diagram](image)

Theorem. If $L_A \leq_P L_B$ and $L_B \in \mathcal{P}$, then $L_A \in \mathcal{P}$.

Proof. Let M be the polynomial-time algorithm that decides L_B, and f be the polynomial-time reduction from L_A to L_B. Consider algorithm M', which on input w acts as follows:

1. computes $f(w)$;
2. runs M on input $f(w)$ and outputs according to the output of M.

We have that $w \in L_A$ if and only if $f(w) \in L_B$ (f is a reduction). Equivalently, M accepts $f(w)$ if and only if $w \in L_A$. Equivalently, M' accepts w if and only if $w \in L_A$.

M' runs in polynomial time. Indeed, Step 1 takes polynomial time, and Step 2 also takes polynomial time because composition of two polynomials is a polynomial.
Practise session

1. True or false?
 (a) \(n = o(2n) \)
 (b) \(3n^5 = O(10n^3 + 20n^2 + 100) \)
 (c) \(2^n = o(3^n) \)
 (d) \(n^2 = O(n \log n) \)

2. Let \(t(n) \) be a function, where \(t(n) \geq n \). Show that every \(t(n) \)-time multitape Turing machine has an equivalent \(O(t^2(n)) \)-time single-tape machine.

3. Define the language:

\[
\text{PATH} = \{ (G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}.
\]

For example:

\[
\begin{array}{c}
s \quad t \\
\end{array}
\]

Prove that \(\text{PATH} \in \mathbb{P} \).

4. Define the language

\[
\text{SUBSET-SUM} = \{ (S, t) \mid S = \{ x_1, x_2, \ldots, x_k \} \text{ is a set of integer numbers, and for some subset } \{ x_{i_1}, x_{i_2}, \ldots, x_{i_l} \} \subseteq S, \sum_{j=1}^{l} x_{i_j} = t \}.
\]

Prove that \(\text{SUBSET-SUM} \in \mathbb{NP} \).
Solutions to the practise session questions

1. True or false?

(a) \(n = o(2n) \)

(b) \(3n^5 = O(10n^3 + 20n^2 + 100) \)

(c) \(2^n = o(3^n) \)

(d) \(n^2 = O(n \log n) \)

Solution.

(a) False: \(\lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \neq 0 \).

(b) False: for any \(n_0 \) and \(C > 0 \) there exists arbitrary large \(n \geq \max\{n_0 + 1, 1000C\} \), such that \(n > n_0 \) and \(3n^5 > C(10n^3 + 20n^2 + 100) \).

(c) True: \(\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^n = 0 \).

(d) False: since \(\lim_{n \to \infty} \frac{n^2}{n \log n} = \lim_{n \to \infty} \frac{n}{\log n} = \infty \), then for any constant \(C > 0 \) there exists \(n \) such that \(f(n) > C g(n) \).

2. Let \(t(n) \) be a function, where \(t(n) \geq n \). Show that every \(t(n) \)-time multitape Turing machine has an equivalent \(O(t^2(n)) \)-time single-tape machine.

Solution. We saw earlier in the course how to convert multitape machine into an equivalent single-tape machine. Now, we show that simulating each step of the multitape machine takes at most \(O(t(n)) \) steps of a single-tape machine.

Recall that initially the single-tape machine \(M_S \) puts on its tape the content of all tapes of the multi-tape machine \(M_M \). To perform one step, \(M_S \) scans all the tape content to determine the symbols under the heads of \(M_M \). Then, \(M_S \) makes another pass to write the new tape content. If one of the heads of \(M_M \) moves rightwards from the last non-blank symbol, \(M_S \) should shift the content of the tape one position to the right.

- What is the maximal number of steps for one scan? Since \(M_M \) makes \(O(t(n)) \) steps in total, the total length of the active part of the tape of \(M_S \) if of length \(O(t(n)) \). Hence each scan of the tape by \(M_S \) takes \(O(t(n)) \) time.
To simulate each step of M_M, M_S performs two scans and possibly one shift to the right. Each such operation (scan/shift) takes at most $O(t(n))$.

The total time needed for simulation of M_M by M_S:
- initialisation of the tape: $O(t(n))$;
- simulation of each of $t(n)$ steps of M_M by M_S: $t(n) \cdot O(t(n)) = O(t^2(n))$.

Total time: $O(t^2(n)) + O(t(n))$.

Since $O(t(n)) \geq O(n)$ (otherwise, M_M cannot even read all its input), we obtain that the total time complexity is $O(t^2(n))$.

3. Define the language:

$$\text{PATH} = \{(G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t\}.$$

For example:

![Directed Graph Example](image)

Prove that $\text{PATH} \in P$.

Solution. Consider the following algorithm M for PATH, which on input (G, s, t) does the following:

1. Marks node s.

2. Repeats the following:
 - scans the edges (u, v) in graph G; if u is marked and v is not marked – mark v.

3. If t is marked – accept, otherwise – reject.

Correctness. If there is a path $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_{l-1} \rightarrow v_l = t$, then by induction on i, the node v_i will be marked. If there is no path from s to t, the there is no way to mark t.

Complexity. Step 1 takes polynomial time. Let m be a number of nodes in G. Then Step 3 is executed at most m times (because each time we mark at least one node). Each of the steps 1–4 requires polynomial time complexity. Therefore, the total complexity is polynomial.
4. Define the language

SUBSET-SUM = \{ \langle S, t \rangle \mid S = \{ x_1, x_2, \ldots, x_k \} \text{ is a set of integer numbers, and for some subset } \{ x_{i_1}, x_{i_2}, \ldots, x_{i_l} \} \subseteq S, \sum_{j=1}^l x_{i_j} = t \}.

Prove that SUBSET-SUM \in NP.

Solution. Construct non-deterministic Turing machine M, which on input $\langle S, t \rangle$ works as follows:

1. Non-deterministically selects a subset $T \subseteq S$.
2. Checks if $\sum_{x \in T} x = t$.
3. If yes – accepts, if not – rejects.

Correctness. If there exists a subset $\{ x_{i_1}, \ldots, x_{i_l} \} \subseteq S$, such that $\sum_{j=1}^l x_{i_j} = t$, then the machine M can choose it, and then it accepts (i.e. there exists accepting computation).

If there is no such subset, any choice in Step 1 will lead to rejection.

Polynomiality. Choice in Step 1 requires polynomial time, and also summation in Step 2. Hence, the algorithm has polynomial complexity.