We will show that there exist languages, which are not even Turing-recognisable.

Definition. A language L is called co-Turing recognisable if it is the complement of a Turing-recognisable language.

Theorem. A language L is decidable if and only if it is Turing-recognisable and co-Turing recognisable.

Proof. (1) If L is decidable, the it is clearly also recognisable. Moreover, its complement is also Turing-recognisable (construct Turing-machine M that simulates the machine M_L that decides L, M rejects if and only if M_L accepts).

(2) Assume that L and \bar{L} (complement of L) are Turing recognisable. Let M_L be a machine that recognises L and $M_{\bar{L}}$ be a machine that recognises \bar{L}. The following machine M decides L then.

Machine M:

1. Runs both M_L and $M_{\bar{L}}$ on input w in parallel.

2. If M_L accepts – accepts, if $M_{\bar{L}}$ accepts – rejects.

(Running in parallel means that M simulates one step of M_L after one step of $M_{\bar{L}}$, etc.)

Now we show that M indeed decides L. Any string w is either in L or in \bar{L}. Therefore, either M_L or $M_{\bar{L}}$ accepts w. M always halts since at least one of the machines halts. If $w \in L$ then M_L accepts and so M accepts. If $w \in \bar{L}$ then $M_{\bar{L}}$ accepts and so M rejects.
Corollary. Language \bar{L}_{TM} is not Turing-recognisable.

Proof. If \bar{L}_{TM} were Turing-recognisable, then (since L_{TM} is Turing-recognisable) L_{TM} would be Turing-decidable. Contradiction.

Define the language:

$$HALT = \{\langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ halts on input } w\}.$$

Theorem. $HALT$ is undecidable.

Proof. For the sake of contradiction, assume that $HALT$ is decidable. We will show that from this assumption it follows that L_{TM} is decidable.

Assume that M_H is a Turing machine that decides $HALT$. We use M_H to construct M_L, which will decide L_{TM}. On input $\langle M, w \rangle$ machine M_L does the following:

1. Runs M_H on input $\langle M, w \rangle$. Since we assumed $HALT$ to be decidable, M_H always halts.
2. If M_H rejects – M_L rejects.
3. If M_H accepts – M_L simulates M on w until it halts.
4. If M accepted w – M_L accepts, if M rejected w – M_L rejects.

If M accepts w then M_L will accept $\langle M, w \rangle$. If M rejects w or if M runs infinitely long on w, M_L will reject $\langle M, w \rangle$. Therefore, M_L decides L_{TM}. Contradiction!

This method of proof is called “reduction from L_{TM}”:

$$L_{TM} \leq_M \text{HALT}$$

can decide \iff can decide

$HALT$ is at least as hard as L_{TM}.

Definition. Function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M on every input w halts with just $f(w)$ on its tape.

Definition. Language A is mapping reducible to language B, written $A \leq_M B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w

$$w \in A \iff f(w) \in B.$$

The function f is called the reduction from A to B.

2
Theorem. If $L_A \leq_M L_B$ and L_B is decidable, then L_A is decidable too.

Proof. Let M_B be a Turing machine that decides L_B and f be a reduction from L_A to L_B. We describe a machine M_A that decides L_A:

1. On input w compute $f(w)$;
2. Run M_B on $f(w)$ and output what M_B outputs.

M_A decides language L_A indeed:
- If $w \in A$, then $f(w) \in B$, since f is reduction. M_B accepts $f(w)$ – therefore M_A accepts w.
- If $w \notin A$, then $f(w) \notin B$. M_B rejects $f(w)$ and therefore M_A rejects w. \hfill \square

Practise session

1. Define $L_\emptyset = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$. Show that L_\emptyset is undecidable.

2. Define $L_{EQ} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}$. Show that L_{EQ} is undecidable.

3. Let $\text{REGULAR} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is a regular language} \}$ prove that REGULAR is undecidable.
Solutions to the practise session questions

1. Define

\[L_\varnothing = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \varnothing \} \]

Show that \(L_\varnothing \) is undecidable.

Solution. We show reduction from \(L_{TM} \) to \(L_\varnothing \) where

\[L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \} \]

which is known to be undecidable. Reduction:

\[
\begin{array}{c}
L_{TM} \\
\leq_M \\
L_\varnothing
\end{array}
\]

\[
\text{decidable} \iff \text{decidable}
\]

Let \(M_\varnothing \) be a Turing machine that decides language \(L_\varnothing \). We use it to construct Turing machine \(M_L \) that decides \(L_{TM} \).

Given Turing machine \(M \), construct Turing machine \(M_w \) that rejects any input except \(w \), but on input \(w \) it works as before (i.e. simulates \(M \) on \(w \)).

If \(M \) accepts \(w \) then \(M_w \) accepts \(w \). If \(M \) does not accept \(w \), then \(M_w \) does not accept \(w \):

\[L(M_w) = \begin{cases} \{ w \}, & \text{if } M \text{ accepts } w \\ \varnothing, & \text{if } M \text{ does not accept } w \end{cases} \]

Machine \(M_w \) is formally defined as follows:

1. If input is not \(w \), then \(M_w \) rejects.
2. If input is \(w \), then \(M_w \) simulates \(M \) on \(w \) and answers accordingly.

Now, we construct Turing machine \(M_L \) as follows. On the input \(\langle M, w \rangle \), \(M_L \) does the following:

1. Constructs a Turing machine \(M_w \) as described above.
2. Runs \(M_\varnothing \) on \(\langle M_w \rangle \) (i.e. on description of \(M_w \)).
3. If \(M_\varnothing \) accepts – reject, if \(M_\varnothing \) rejects – accept.

Let us show that \(M_L \) is correct.

- If \(M \) accepts \(w \) then \(M_w \) accepts \(w \). Therefore \(L(M_w) \neq \varnothing \) and therefore in Step 2, \(M_\varnothing \) rejects \(\langle M_w \rangle \). Therefore, \(M_L \) accepts \(\langle M, w \rangle \).
• If M does not accept w, then M_w does not accept w. M_w also does not accept any other input. Therefore, $L(M_w) = \emptyset$. Therefore, in Step 2, M_\emptyset accepts $\langle M_w \rangle$. And, hence, M_L rejects $\langle M, w \rangle$.

Conclusion. We constructed M_L, the Turing machine that decides L_{TM}. This is impossible. Contradiction!

Note. The machine M_L should be able to construct M_w from M. However, M_w works exactly as M, except that in the beginning it checks that the input is exactly w. This can be easily done algorithmically.

2. Define

$$L_{EQ} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2)\}.$$

Show that L_{EQ} is undecidable.

Solution. We perform reduction:

$$L_{\emptyset} \leq_M L_{EQ}.$$

For the sake of contradiction, assume that M_{EQ} is a Turing machine that decides L_{EQ}. We construct a machine M_\emptyset that decides L_{\emptyset}.

The machine M_\emptyset does the following on input $\langle M \rangle$:

1. Runs M_{EQ} on input $\langle M, M_1 \rangle$, where M_1 is the machine that rejects all inputs.
2. If M_{EQ} accepts – accept, if M_{EQ} rejects – reject.

Let us show that M_\emptyset is correct.

• If $L(M) = \emptyset$, then $L(M) = L(M_1)$ and hence M_{EQ} accepts and M_\emptyset accepts.

• If $L(M) \neq \emptyset$ then $L(M) \neq L(M_1)$, thus M_{EQ} rejects and M_\emptyset rejects.

We constructed machine M_\emptyset that decides L_{\emptyset}. Contradiction! Therefore the assumption that L_{EQ} is decidable was wrong.

3. Let

$$\text{REGULAR} = \{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is a regular language}\}$$

Prove that REGULAR is undecidable.
Solution. We show reduction:

\[L_{TM} \leq_M \text{REGULAR}. \]

Assume that REGULAR is decidable, and let \(M_R \) be a Turing machine that decides REGULAR. We construct Turing machine \(M_L \) that decides \(L_{TM} \). On the input \(\langle M, w \rangle \), \(M_L \) does the following:

1. Constructs machine \(M_0 \), which on input \(x \) does the following:

 (a) if \(x \) is of the form \(0^n1^n \) – accepts;

 (b) if \(x \) is not of the form \(0^n1^n \), run \(M \) on input \(w \) and accept if and only if \(M \) accepts.

2. Runs \(M_R \) on input \(\langle M_0 \rangle \).

3. If \(M_R \) accepts – accept, if \(M_R \) rejects – reject.

What is the language of \(M_0 \)?

- If \(M \) accepts \(w \), then \(L(M_0) = \Sigma^* \). This is regular language.

- If \(M \) does not accept \(w \), then \(L(M_0) = \{0^n1^n \mid n \geq 0 \} \). This is non-regular language.

Therefore:

- if \(M \) accepts \(w \) then \(L(M_0) = \Sigma^* \) and \(M_R \) accepts \(\langle M_0 \rangle \) in Step 2. Therefore \(M_L \) accepts.

- If \(M \) does not accept \(w \) then \(L(M_0) \) is irregular and \(M_R \) rejects \(\langle M_0 \rangle \) in Step 2. Therefore, \(M_L \) rejects.

So \(M_L \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \).

Note. All steps are computable by the Turing machines. In particular, constructing \(M_0 \) is possible: first \(M_0 \) checks for certain type of input and then simulates \(M \) on \(w \).

Conclusion. We found that if there exists \(M_R \) (the machine that decides REGULAR), then there exists \(M_L \) (the machine that decides \(L_{TM} \)). Not possible. Contradiction!