Decidable languages

We can express different computational problems as languages. For example, testing whether a particular DFA accepts the given string:

\[L_{\text{DFA}} = \{ \langle A, w \rangle \mid A \text{ is a DFA, that accepts the input string } w \} \]

Here, \(\langle A, w \rangle \) represents a pair:

- encoding of the DFA \(A \) (list of five ingredients: \(Q, \Sigma, \delta, q_0, F \));
- input string \(w \).

The task of deciding whether DFA \(A \) accepts a string \(w \) is equivalent to checking if the pair \(\langle A, w \rangle \) is in the language \(L_{\text{DFA}} \).

Theorem. \(L_{\text{DFA}} \) is a decidable language.

Proof. We design a TM \(M \) that decides the language \(L_{\text{DFA}} \).

On the input \(\langle A, w \rangle \), the machine \(M \) will simulate the automaton \(A \) on \(w \), and accept/reject according to the automaton’s decision.

First, \(M \) scans the input and determines if the input properly represents a DFA (which we denote as \(A \)) and a string (which we denote as \(w \)). If not, \(M \) rejects.
Second, M simulates A. It keeps track of A’s current state and A’s current position in the input w by writing the information directly on the tape.

In the beginning, the input of M is w, and the head position is the leftmost symbol of w. The states and the positions are updated according to the transition function δ. When M is finishing processing the last symbol of w, it goes to accept/reject state depending on whether A is in the accept/reject state.

Similarly define

$$L_{\text{NFA}} = \{ \langle A, w \rangle \mid A \text{ is an NFA that accepts the input string } w \}.$$

Theorem. L_{NFA} is a decidable language.

Proof. We present a TM M' that decides L_{NFA}: on the input $\langle A, w \rangle$, M' does the following:

1. Converts A into equivalent DFA A', by using the procedure that was studied in the course.
2. Run the machine M from the previous theorem on the input $\langle A', w \rangle$.

One more example. Let

$$L_{\emptyset} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

I.e. all DFAs that do not accept anything.

Theorem. L_{\emptyset} is a decidable language.

Proof. A DFA A accepts some string if and only if reaching one of the accept states by travelling along the arrows of the DFA is possible. Therefore, a TM \hat{M} will test if there exists such a path.

For example, in the automaton

![Automaton Diagram]
there is a path $q_0 \rightarrow q_1 \rightarrow q_3 \rightarrow q_4$. This correspond to the input 010. Therefore $L(A) \neq \emptyset$ as $010 \in L(A)$.

$\mathrm{TM} \widehat{M}$ works as follows.

1. Mark the start state of A.

2. Repeat until no new states are marked:
 - Mark any unmarked state that has an incoming arrow from any state that was marked already.

3. If no accept state is marked – accept, otherwise – reject.

For the example above, \widehat{M} will mark the states in the following order:

q_4 is marked, so \widehat{M} rejects (A accepts at least one string).

Undecidable languages

Define:

$$L_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}.$$

Theorem. L_{TM} is undecidable.

Note. We present a proof based on a technique called “diagonalisation”.

Proof. We prove by contradiction. Assume, that there exists a Turing machine H, where

$$H(\langle M, w \rangle) = \begin{cases}
\text{accepts,} & \text{if } M \text{ accepts } w, \\
\text{rejects,} & \text{if } M \text{ does not accept } w \text{ (either rejects or loops).}
\end{cases}$$
Now we construct a new machine D, which uses H as a subroutine. On input $\langle M \rangle$, D does the following:

1. Runs H on input $\langle M, \langle M \rangle \rangle$.
2. Outputs the opposite of what H outputs. That is, if H accepts – D rejects; if H rejects – D accepts.

In summary,

$$D(\langle M \rangle) = \begin{cases}
\text{accepts}, & \text{if } M \text{ does not accept } \langle M \rangle, \\
\text{rejects}, & \text{if } M \text{ accepts } \langle M \rangle.
\end{cases}$$

Question: what happens when we run D with its own encoding $\langle D \rangle$ as an input? In this case

$$D(\langle D \rangle) = \begin{cases}
\text{accepts}, & \text{if } D \text{ does not accept } \langle D \rangle, \\
\text{rejects}, & \text{if } D \text{ accepts } \langle D \rangle.
\end{cases}$$

No matter what D is supposed to do, it does the opposite. Contradiction. Therefore such H does not exist.

\[\Box\]

\section*{Practise session}

1. Define the language

$$L_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates the string } w \}.$$

Show that L_{REX} is a decidable language.

2. Define the language:

$$L_{\text{DFAEQ}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFA and } L(A) = L(B) \}.$$

Prove that L_{DFAEQ} is a decidable language.

3. Define the language

$$L_1 = \{ \langle A \rangle \mid A \text{ is a DFA that accepts at least one string of the form } 1^* \}.$$

Prove that L_1 is decidable.

4. Define the language

$$L_{k-\text{STR}} = \{ \langle A, k \rangle \mid A \text{ is a DFA and } L(A) \text{ consists of exactly } k \text{ strings, } k \in \mathbb{N} \}.$$

Prove that $L_{k-\text{STR}}$ is decidable.
Solutions to the practise session questions

1. Define the language

\[L_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates the string } w \} \]

Show that \(L_{\text{REX}} \) is a decidable language.

Solution. We construct a TM \(M \) that on the input \(\langle R, w \rangle \) does the following:

1. Converts \(R \) into an equivalent NFA \(A \) by using the procedure for conversion that we studied.
2. Gives an input \(\langle A, w \rangle \) to the TM that decides \(L_{\text{NFA}} \).
3. If \(\langle A, w \rangle \in L_{\text{NFA}} \) – accepts, otherwise – rejects.

2. Define the language:

\[L_{\text{DFAEQ}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFA and } L(A) = L(B) \} \]

Prove that \(L_{\text{DFAEQ}} \) is a decidable language.

Solution. We construct a new DFA \(C \), which accepts strings that are accepted by either \(A \) or \(B \), but not by both\(^1\). Then

\[L(C) = (L(A) \cap L(B)) \cup (\overline{L(A)} \cap L(B)). \]

\[\begin{array}{c}
 \text{L(A)} \\
 \text{L(B)} \\
 \text{L(C)}
\end{array} \]

- If \(L(A) = L(B) \), then \(L(A) \cap \overline{L(B)} = \emptyset \) and \(\overline{L(A)} \cap L(B) = \emptyset \), hence \(L(C) = \emptyset \).

- If \(L(A) \neq L(B) \), then there exists \(w \in L(A) \), \(w \notin L(B) \) (or vice versa). Then \(w \in L(A) \cap \overline{L(B)} \) (or, respectively, \(w \in \overline{L(A)} \cap L(B) \)) and therefore \(w \in L(C) \) and \(L(C) \neq \emptyset \).

\(^1\)Such an automaton is easy to build: it runs \(A \) and \(B \) in parallel and accepts if and only if exactly one of \(A \) and \(B \) accepts
So $L(A) = L(B)$ if and only if $L(C) = \emptyset$.

We construct a TM M as follows. On the input $\langle A, B \rangle$ it does the following:

1. Constructs C as described.
2. Runs TM that decides the language $L(\emptyset)$ on $\langle C \rangle$.
3. If $\langle C \rangle \in L(\emptyset)$ – accepts. If $\langle C \rangle \notin L(\emptyset)$ – rejects.

3. Define the language

$L_1 = \{ \langle A \rangle \mid A$ is a DFA that accepts at least one string of the form $1^* \}$.

Prove that L_1 is decidable.

Solution. We construct TM M that decides L_1. On the input $\langle A \rangle$, M does the following:

1. Constructs a DFA B that accepts exactly language described by 1^*.
2. Constructs a DFA C, such that $L(C) = L(A) \cap L(B)$.
3. Checks if $\langle C \rangle \in L(\emptyset)$. If no – accepts, if yes – rejects.

Let us justify the construction.

- If $\langle C \rangle \in L(\emptyset)$ then $L(C) = \emptyset$ and so $L(A) \cap L(B) = \emptyset$. This means that for each $w \in L(A)$, it holds that $w \notin L(B)$ and therefore w does not have the form 1^*.

- If $\langle C \rangle \notin L(\emptyset)$, then $L(C) \neq \emptyset$ and $L(A) \cap L(B) \neq \emptyset$. Thus there exists w, such that $w \in L(A)$ and $w \in L(B)$. This means that w has the form 1^* and $w \in L(A)$. Correct.

4. Define the language

$L_{k\text{-STR}} = \{ \langle A, k \rangle \mid A$ is a DFA

and $L(A)$ consists of exactly k strings, $k \in \mathbb{N} \}$.

Prove that $L_{k\text{-STR}}$ is decidable.

Proof. We construct a TM M, which decides $L_{k\text{-STR}}$. On the input $\langle A, k \rangle$, M does the following.
1. Checks the number of states of A. Denote this number by p.

2. Constructs a DFA B, that accepts all strings of length p or longer. Also constructs a DFA C, such that $L(C) = L(A) \cap L(B)$.

3. Generates all strings of length $\leq p - 1$ and tests whether each string is accepted by A. Counts the number of such strings, denote this number by c_A.

4. Tests whether $L(C) = \emptyset$.

5. If $L(C) = \emptyset$ and $c_A = k$ – accepts, otherwise – rejects.

Let us show that M does what we want.

- First, note that due to the pumping lemma, if A accepts any string of length $\geq p$, then it accepts infinitely many strings. This condition is tested by testing if $L(C) = \emptyset$.

- Provided A does not accept any strings of length $\geq p$, c_A is exactly the cardinality of $L(A)$. Thus M accepts if and only if $|L(A)| = k$. \qed