It is possible to collect up to 110 points in this homework.

1. For each of the following deterministic finite automata $M = (Q, \Sigma, \delta, q_0, F)$ describe all the ingredients Q, Σ, δ, q_0 and F. What language is recognized by each M?

 (a)

 (b)

2. For two languages L_1 and L_2, define the difference $L_1 \setminus L_2$ as follows:

 $$L_1 \setminus L_2 = \{ w \mid w \in L_1 \text{ and } w \notin L_2 \} .$$

 Show that if L_1 and L_2 are two regular languages over the alphabet Σ, then $L_1 \setminus L_2$ is regular over the same alphabet.

 Example: if $L_1 = \{001, 110, 11\}$ and $L_2 = \{110, 00\}$, then $L_1 \setminus L_2 = \{001, 11\}$.

3. Let $\Sigma = \{0, 1, 2\}$. For a given string denote by n_1 and n_2 the number of symbols ‘1’ and ‘2’ in it, respectively.

 (a) Construct a deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$, which recognizes the language of all strings with $n_1 + 2 \cdot n_2$ divisible by 5.

 (b) Construct a deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$, which accepts the language of all strings, where each substring of length four contains symbol ‘2’.

 In both parts describe all the ingredients Q, δ, q_0 and F.
4. (a) Describe all the ingredients Q, Σ, δ, q_0 and F of the following nondeterministic finite automaton $\mathcal{N} = (Q, \Sigma, \delta, q_0, F)$. What language does it recognize?

(b) Convert \mathcal{N} into an equivalent deterministic automaton.