Linear classification

Sven Laur
University of Tartu
Why linear classification is useful?

Decision trees split data into smaller chunks with thresholding $x_i \leq t_i$.

- Thus decision trees cannot track linear boundaries well.
- Linear decision borders $w_1 x_1 + \cdots + w_n x_n \leq -w_0$ occur often.
- Linear decision borders make chunking easier for recursive splitting.
From binary to arbitrary classification

Binary classification can be used for multi-label classification problems:

▶ one-vs-all classification
▶ all-vs-all classification
▶ hierarchical classification
One versus all classification

Classification is obtained by a committee voting:

- A one-vs-all classifier for each potential label.
- The label with the highest decision value wins.
All versus all classification

Classification is obtained by a committee voting:
- A one-vs-other classifier for each potential label pair.
- Votes for each label are aggregated.
- The label with the highest number of votes wins.
Hierarchical classification resolves labels gradually:

▷ First all labels are split into two groups.
▷ Then each group is recursively split until two labels remain.
▷ The final class is decided in a leaf node with a binary classifier.

Differently from decision trees a label can be produced only by a single leaf.
Binary linear classification

Decision rule
\[y = \text{sign}(w_0 + w_1 x_1 + \cdots w_n x_n) \]

Discriminant function
\[f(x) = w_0 + w_1 x_1 + \cdots w_n x_n \]

Model parameters
- bias term \(w_0 \)
- weights \(w = (w_1, \ldots, w_n)^T \)

- Model parameters are found by minimising a cost function.
- Different cost functions lead to a different linear classifiers.
- Different linear models have same limitations but different performance.
How to choose a cost function?

We cannot use the number misclassified labels as a cost function

▷ Cost function must be almost everywhere differentiable
▷ Cost function should have only one global minimum point
Not all mistakes are equal. Mistakes with high values of $f_{w,w_0}(x_i)$ are bad

$$J(w, w_0) = \sum_{i: f_{w,w_0}(x_i)y_i < 0} -y_i f_{w,w_0}(x_i) = \sum_{i: f_{w,w_0}(x_i)y_i < 0} -y_i (w^T x_i + w_0)$$
Perceptron cost is continuous

The cost function is continuous and bounded from below by zero.

For simplicity consider alternative formulation of the function

\[J(w, w_0) = -\sum_{i=1}^{n} [y_i(w^T x_i + w_0) < 0] y_i(w^T x_i + w_0) \]

and look at individual terms of the sum.

If a decision is certain: \(|w^T x_i + w_0| > 0\) then in a small neighbourhood \(\|\delta w\|^2 + \delta w_0^2 < \varepsilon\) the predicted labels \(\hat{y}\) do not change and the continuity follows from the continuity of sum and scalar product.

For a borderline decision \(|w^T x_i + w_0| = 0\), we can show that \(w^T x_i + w_0\) converges to zero if the neighbourhood shrinks \(\varepsilon \to 0\). This is enough!
Gradient of the perceptron cost

The cost function is differentiable in all points where the decision is certain

\[
\frac{\partial J}{\partial w} = - \sum_{i=1}^{n} \frac{\partial}{\partial w} [y_i(w^T x_i + w_0) < 0]y_i(w^T x_i + w_0)
\]

\[
= - \sum_{i=1}^{n} [y_i(w^T x_i + w_0) < 0]y_i \frac{\partial w^T x_i}{\partial w}
\]

\[
= - \sum_{i=1}^{n} [y_i(w^T x_i + w_0) < 0]y_i x_i
\]

\[
\frac{\partial J}{\partial w_0} = - \sum_{i=1}^{n} [y_i(w^T x_i + w_0) < 0]y_i
\]

In borderline points we can use the formulae above to fix the gradient value.
Perceptron cost has no local minima

Let \(w, w_0 \) be a local minimum. Then for any \(\alpha \in \mathbb{R} \) the predicted labels of \(f_{w, w_0} \) and \(f_{\alpha w, \alpha w_0} \) coincide. Consequently,

\[
J_{\alpha w, \alpha w_0} = \alpha J_{w, w_0}
\]

and \(w, w_0 \) can be a local minimum only if \(J_{w, w_0} = 0 \).

▷ Does the cost function have non-trivial minimum?
 ◦ If labels are linearly separable such a minimum exists
 ◦ Gradient decent will converge to this point for non-zero starting point.

▷ Does gradient decent converge to such a minimum in finite time?
 ◦ Certain gradient decent algorithms converge in finite number of steps
 ◦ Simple proofs exists for fixed learning rate
Minimum region for the perceptron cost

The global minimum is achievable in a large region
Minimum squared error cost

If we define the classification penalty

\[J_{\mathbf{w}, w_0} = \sum_{i=1}^{n} (y_i^* - \mathbf{w}^T \mathbf{x}_i - w_0)^2 \]

where \(y_i^* \) are computable from true labels \(y_i \) then

▷ The existence of a single minimum is guaranteed.
▷ The solution can be expressed by closed linear regression formula.
▷ However, the solution is not guaranteed to have a good precision.
▷ For certain values of \(y_1^*, \ldots, y_n^* \) the solution is known to be sensible.
Linear regression vs linear classification
Fishers cost function for 1D

\[m_j = \frac{1}{n_1} \sum_{y_i = j} x_i \]

\[\sigma^2_j = \frac{1}{n_1} \sum_{y_i = j} (x_i - m_j)^2 \]

▷ Estimate mean and standard deviation of both classes.
▷ Find the threshold so that both density functions are equal.