
MTAT.03.227 Machine Learning (Spring 2015)

Exercise session V: Optimization basics

Konstantin Tretyakov

March 10, 2015

The aim of this exercise session is to get acquainted with the basics of opti-
mization methods. In particular, we are going to explore the following topics:

• Analytic optimization of a quadratic function.
• Gradient descent for one- and two-dimensional functions.
• Newton’s method.
• Stochastic descent.
• Non-differentiable functions.
• Constrained gradient descent.

For that we shall go through 30 small exercises, each worth 0.5 points and
presumably doable in under 5-10 minutes even by the slowest of us. For each
exercise you typically need to write up a short piece of code (usually about 1-2
lines), and 1-2 sentences of your opinion about what you did and saw. You
can submit your whole solution as a single R file with comments, provided it is
formatted to be sequentially readable. Exercises marked with a * are suggested
as bonus tasks. As usual, the nominal point count is 10, but I’m sure doing all
15 points would not hurt.

We shall use the following toy example in our exercises (which is, as you
might figure out, a trivialized version of a clustering problem).

Description of the problem The village of Optimia consists of a single
kilometer-long straight road with five houses built along it. The road has dis-
tance markings. The first house is built at marking 0, the second – at marking
0.2, the third – 0.4, fourth – 0.9 and fifth – 1.0.

The villagers wish to embrace the marvels of the Internet and want to build
a data center somewhere along their central road. The question they face is – at

1

what position along the road should they build it in order to optimize cabling
costs.

The data center will be connected with a separate cable to each of the five
houses. The price of each cable piece is somehow dependent on the distance
between the house and the center. That is, if the data center is built at position
w along the road, the cabling company will charge the villagers a total of

`(|w − 0.0|) + `(|w − 0.2|) + `(|w − 0.4|) + `(|w − 0.9|) + `(|w − 1.0|),

where `(d) is the price of a cable of length d (this will vary between the exercises).

Exercise 1 (0.5pt). Suppose the price of each cable segment is `(d) = d2. Fermat’s rule
Find the optimum position for the data center analytically.

Hint: This was done on the lecture.

Exercise 2 (0.5pt). Define an R function f which takes position of the data Objective func-
tioncentre w as input and produces the resulting total cost of the cable. Plot the

function using the following code:

ws = seq(0,1,0.01)

plot(ws, Vectorize(f)(ws))

Exercise 3 (0.5pt). Define an R function df which takes w as input and Gradient
outputs ∇f(w). Plot it. What is the important y-value to look for on that
plot?

Exercise 4 (0.5pt). Implement the function gradient_descent(f, df, x0, Gradient
descentu, nsteps), which takes in the function to be optimized f, the gradient of the

function df, the initial guess x0, the step size u, the number of steps nsteps,
and returns the result of running the basic gradient descent optimization algo-
rithm. Run the function using f and df defined above, with x0 = 0, u=0.01,

nsteps=100. Does it produce the correct answer?
Hint: ∆xi = −µ∇f(xi), remember?
Hint: The whole body of the function should not be longer than 5 lines. In

fact, just 3 suffices.

Exercise 5 (0.5pt). Study the following code: Step size

gd_by_step_size = Vectorize(function(step) {

gradient_descent(f, df, 0, step, 20)

})

step_sizes = seq(0,0.3,0.01)

output = gd_by_step_size(step_sizes)

Try to guess, without running it, what will be in the output array. Verify
your guess. If you guessed correctly, explain how you did it. If you did not,
understand what is happening and explain.

2

Exercise 6-7 (1.0pt). Modify the function gradient_descent so that it Convergence
propertieswould output, along with the correct answer, the whole trajectory of the solu-

tion. In particular, make the last lines of your function the following:

...

result = list(xi, traj)

names(result) = c("ans", "traj")

result

}

Now do plot(gradient_descent(f, df, 0, step_size, 20)$traj) for
step_size equal to 0.01, 0.08, 0.1, 0.15, 0.19, 0.20, 0.21. What dif-
ferent types of behaviour do you observe?

Exercise 8-9 (1.0pt). Define a function ddf which outputs ∇2f . Then, Newton’s algo-
rithmdefine the function newton_descent(f, df, ddf, x0, nsteps) which imple-

ments the Newton’s algorithm. Make sure it outputs the trajectory in the same
way as gradient_descent does. Study the trajectories for various starting
points. What do you observe? Why is it happening? Compare the value of
∇2f(w)−1 with the step sizes you studied in the previous exercise.

Hint: ∆xi = −H−1c, remember? This means ∆x = − ∇f(x)
∇2f(x) .

Exercise 10 (0.5pt). Next we want to implement a stochastic version of gra- Stochastic de-
scentdient descent. Which function (f, df, gradient_descent) needs modification

to achieve it (only one does)? Modify the necessary function appropriately and
study the trajectories of the stochastic gradient descent algorithm for various
step sizes (as in Exercise 6-7). What differences do you see? Could we also use
a stochastic Newton’s descent, what do you think?

Hint: You’ll need to use R’s sample function.
Hint: ∆xi = −µ∇fj(xi).

Exercise 11 (0.5pt). Now the cable company proposes new cabling prices. Handling non-
differentiable
points

Namely, `(d) = |d|. Define f, df and ddf appropriately and plot them (figure
out a natural way to handle non-differentiable points).

Exercise 12* (0.5pt). The optimal w for the previous cable prices (the `(d) = Nice-to-know
d2 case) was the mean. What is the optimal w for the new scheme? Study the
plot of df to guess an answer, then prove the general result.

Exercise 13 (0.5pt). Repeat Exercise 5 for the new function. Do you see Non-
differentiability
issues

conceptual differences from the previous case? Explain their causes. You should
see that non-differentiability of f at just a couple of points, although it can be
handled in an ad-hoc manner, may cause convergence problems for gradient
descent. It also makes it hard to devise a reliable convergence criterion.

Also, what about using the Newton’s algorithm here?

3

Exercise 14 (0.5pt). Implement stochastic gradient descent for the new ob-
jective function. Contemplate the conceptual simplicity of the resulting algo-
rithm and feel happy about it.

Exercise 15-16 (1.0pt). Later on, the inhabitants of Optimia decided that Multidimensional
optimizationthey could have two data centers instead of one. Each house would only need

to set up a single cable link to the closer of the two data centers. The price of
the cabling is `(d) = |d|, thus the overall cabling price would be:

f(w1, w2) =

5∑
i=1

min(|w1 − hi|, |w2 − hi|),

and the new task is to find the optimal locations for two data centers w1 and
w2.

Implement the new objective function f(w) where w = c(w1, w2) will be
treated as a vector. Plot f using the following code:

x = seq(0,1,by=0.05)

y = seq(0,1,by=0.05)

fvals = outer(x, y, Vectorize(function(w1,w2){ f(c(w1,w2)) }))

contour(x,y,fvals)

image(x,y,fvals)

Hint: mapply(min, dists_to_1, dists_to_2)

Exercise 17-19 (1.5pt). Implement the gradient df for the above mentioned Multidimensional
gradientfunction. Note that the gradient must return a vector of two elements. Handle

non-differentiable points naturally.

Exercise 20-21* (1.0pt). A multidimensional gradient is a vector field and Visualizing
multidimen-
sional gradient

cannot be visualized using contour or image plots. Find a way to visualize the
gradient as shown below:

Hint: You’ll need arrow.plot from the fields package.

4

Exercise 22 (0.5pt). Make sure your gradient descent implementation works Multidimensional
gradient de-
scent

with the new multidimensional functions. If you did Exercise 4 correctly, chances
are your algorithm works with the new multidimensional functions without any
modification. The only place which might require changes is the trajectory com-
pilation. If before you used something like traj = c(traj, xi) then simply
rewrite it to traj = rbind(traj, xi).

Test your algorithm by running

result = gradient_descent(f, df, runif(2), 0.01, 100)

contour(x, y, fvals) # From Ex. 15-16

points(result$traj[,1], result$traj[,2], col=’red’)

Exercise 23 (0.5pt). Implement a stochastic version of 2-dimensional gradi- Multidimensional
stochastic gra-
dient descent

ent descent. Run it and plot the results as in previous exercise.

Exercise 24 (0.5pt). In practice you would rarely need to implement your Library func-
tionsown optimization algorithm. Use the R’s built-in optim function to find a

solution to your current optimization problem. Show the most basic way of
invoking this function.

Exercise 25* (0.5pt). The villagers just found out that their two data centers Constrained
optimizationmay not be located further away from each other than 0.5km. I.e. the locations

of the two data centers must satisfy

|w1 − w2| ≤ 0.5

Do(es) the current solution(s) satisfy this requirement? Which points on the
contour plot satisfy it? Is it a convex set of points?

Exercise 26-28* (1.5pt). Let us implement constrained stochastic gradient Constrained
gradient de-
scent

descent to help the villagers. Note that as our objective is not convex, this
approach may not always work, but in this case it actually will. You need to
change your gradient descent implementation by adding a constraint check and
a projection step, i.e, you’ll have something like:

for (i in 1:nsteps) {

xi = xi - u*df(xi);

if (xi does not satisfy constraints) xi = project(xi)

traj = rbind(traj, xi)

}

The non-obvious part is the orthogonal projection onto the set {(w1, w2) :
|w1 − w2| ≤ 0.5}.

5

Exercise 29-30* (1.0pt) Finally, it might be interesting to implement the Multidimensional
Newton’s de-
scent

multidimensional Newton’s algorithm. As you should know by now, it will not
work with the `(d) = |d| case, and it will work somewhat trivially for `(d) = d2

case. The next simplest choice is `(d) = |d|3. Implement the correspond-
ing functions f, df, ddf (which will produce a matrix this time!), fix up your
newton_descent appropriately and see how it works.

6

