MTAT.03.227 Machine Learning (Spring 2015)
Eixercise session V: Optimization basics

Konstantin Tretyakov

March 10, 2015

The aim of this exercise session is to get acquainted with the basics of opti-
mization methods. In particular, we are going to explore the following topics:

Analytic optimization of a quadratic function.

Gradient descent for one- and two-dimensional functions.
Newton’s method.

Stochastic descent.

Non-differentiable functions.

Constrained gradient descent.

For that we shall go through 30 small exercises, each worth 0.5 points and
presumably doable in under 5-10 minutes even by the slowest of us. For each
exercise you typically need to write up a short piece of code (usually about 1-2
lines), and 1-2 sentences of your opinion about what you did and saw. You
can submit your whole solution as a single R file with comments, provided it is
formatted to be sequentially readable. Exercises marked with a * are suggested
as bonus tasks. As usual, the nominal point count is 10, but I'm sure doing all
15 points would not hurt.

We shall use the following toy example in our exercises (which is, as you
might figure out, a trivialized version of a clustering problem).

Description of the problem The village of Optimia consists of a single
kilometer-long straight road with five houses built along it. The road has dis-
tance markings. The first house is built at marking 0, the second — at marking
0.2, the third — 0.4, fourth — 0.9 and fifth — 1.0.

0.0 0.2 0.4 0.9 1.0

The villagers wish to embrace the marvels of the Internet and want to build
a data center somewhere along their central road. The question they face is — at

what position along the road should they build it in order to optimize cabling
costs.

The data center will be connected with a separate cable to each of the five
houses. The price of each cable piece is somehow dependent on the distance
between the house and the center. That is, if the data center is built at position
w along the road, the cabling company will charge the villagers a total of

(lw—0.0]) + £(Jw — 0.2]) + £(Jw — 0.4]) + £(|w — 0.9]) + £(Jw — 1.0]),

where £(d) is the price of a cable of length d (this will vary between the exercises).

Exercise 1 (0.5pt). Suppose the price of each cable segment is £(d) = d?. Fermat’s rule
Find the optimum position for the data center analytically.
Hint: This was done on the lecture.

Exercise 2 (0.5pt). Define an R function £ which takes position of the data Objective func-
centre w as input and produces the resulting total cost of the cable. Plot the tion
function using the following code:

ws = seq(0,1,0.01)
plot(ws, Vectorize(f) (ws))

Exercise 3 (0.5pt). Define an R function df which takes w as input and Gradient
outputs Vf(w). Plot it. What is the important y-value to look for on that
plot?

Exercise 4 (0.5pt). Implement the function gradient_descent (f, df, x0, Gradient
u, nsteps), which takes in the function to be optimized f, the gradient of the descent
function df, the initial guess x0, the step size u, the number of steps nsteps,
and returns the result of running the basic gradient descent optimization algo-
rithm. Run the function using £ and df defined above, with x0 = 0, u=0.01,
nsteps=100. Does it produce the correct answer?

Hint: Az; = —uV f(x;), remember?

Hint: The whole body of the function should not be longer than 5 lines. In
fact, just 3 suffices.

Exercise 5 (0.5pt). Study the following code: Step size

gd_by_step_size = Vectorize(function(step) {
gradient_descent(f, df, 0, step, 20)
b
step_sizes = seq(0,0.3,0.01)
output = gd_by_step_size(step_sizes)

Try to guess, without running it, what will be in the output array. Verify
your guess. If you guessed correctly, explain how you did it. If you did not,
understand what is happening and explain.

Exercise 6-7 (1.0pt). Modify the function gradient_descent so that it
would output, along with the correct answer, the whole trajectory of the solu-
tion. In particular, make the last lines of your function the following:

result =

list(xi, traj)
names (result) = c("ans", "traj")
result

}

Now do plot(gradient_descent(f, df, 0, step_size, 20)$traj) for
step_size equal to 0.01, 0.08, 0.1, 0.15, 0.19, 0.20, 0.21. What dif-
ferent types of behaviour do you observe?

Exercise 8-9 (1.0pt). Define a function ddf which outputs V2f. Then,
define the function newton_descent(f, df, ddf, x0, nsteps) which imple-
ments the Newton’s algorithm. Make sure it outputs the trajectory in the same
way as gradient_descent does. Study the trajectories for various starting
points. What do you observe? Why is it happening? Compare the value of

V2f(w)~! with the step sizes you studied in the previous exercise.
Vf(x)
TVEf(@)

Hint: Az; = —H ¢, remember? This means Az =
Exercise 10 (0.5pt). Next we want to implement a stochastic version of gra-
dient descent. Which function (f, df, gradient_descent) needs modification
to achieve it (only one does)? Modify the necessary function appropriately and
study the trajectories of the stochastic gradient descent algorithm for various
step sizes (as in Exercise 6-7). What differences do you see? Could we also use
a stochastic Newton’s descent, what do you think?

Hint: You'll need to use R’s sample function.

Hint: Ax; = —uV f; (24)-

Exercise 11 (0.5pt). Now the cable company proposes new cabling prices.
Namely, ¢(d) = |d|. Define £, df and ddf appropriately and plot them (figure
out a natural way to handle non-differentiable points).

Exercise 12* (0.5pt). The optimal w for the previous cable prices (the £(d) =
d? case) was the mean. What is the optimal w for the new scheme? Study the
plot of df to guess an answer, then prove the general result.

Exercise 13 (0.5pt). Repeat Exercise 5 for the new function. Do you see
conceptual differences from the previous case? Explain their causes. You should
see that non-differentiability of f at just a couple of points, although it can be
handled in an ad-hoc manner, may cause convergence problems for gradient
descent. It also makes it hard to devise a reliable convergence criterion.

Also, what about using the Newton’s algorithm here?

Convergence
properties

Newton’s algo-
rithm

Stochastic de-
scent

Handling non-
differentiable
points

Nice-to-know

Non-
differentiability
1ssues

Exercise 14 (0.5pt). Implement stochastic gradient descent for the new ob-
jective function. Contemplate the conceptual simplicity of the resulting algo-
rithm and feel happy about it.

Exercise 15-16 (1.0pt). Later on, the inhabitants of Optimia decided that
they could have two data centers instead of one. Each house would only need
to set up a single cable link to the closer of the two data centers. The price of
the cabling is #(d) = |d|, thus the overall cabling price would be:

5
f(wla wQ) = Zmln(|w1 - h’l‘7 ‘wQ - h7|)a

i=1

and the new task is to find the optimal locations for two data centers w; and
wa.

Implement the new objective function f(w) where w = c(wl, w2) will be
treated as a vector. Plot f using the following code:

x = seq(0,1,by=0.05)

y = seq(0,1,by=0.05)

fvals = outer(x, y, Vectorize(function(wl,w2){ f(c(wl,w2)) }))
contour (x,y,fvals)

image(x,y,fvals)

Hint: mapply(min, dists_to_1, dists_to_2)

Exercise 17-19 (1.5pt). Implement the gradient df for the above mentioned
function. Note that the gradient must return a vector of two elements. Handle
non-differentiable points naturally.

Exercise 20-21* (1.0pt). A multidimensional gradient is a vector field and
cannot be visualized using contour or image plots. Find a way to visualize the
gradient as shown below:

o

08
1

08

04

0.2

0.0

Hint: You'll need arrow.plot from the fields package.

Multidimensional
optimization

Multidimensional
gradient

Visualizing
multidimen-
stonal gradient

Exercise 22 (0.5pt). Make sure your gradient descent implementation works — Multidimensional
with the new multidimensional functions. If you did Exercise 4 correctly, chances gradient de-
are your algorithm works with the new multidimensional functions without any scent
modification. The only place which might require changes is the trajectory com-
pilation. If before you used something like traj = c(traj, xi) then simply
rewrite it to traj = rbind(traj, xi).

Test your algorithm by running

result = gradient_descent(f, df, runif(2), 0.01, 100)
contour(x, y, fvals) # From Ex. 15-16
points(result$traj[,1], result$trajl[,2], col=’red’)

Exercise 23 (0.5pt). Implement a stochastic version of 2-dimensional gradi- Multidimensional
ent descent. Run it and plot the results as in previous exercise. stochastic gra-
dient descent

Exercise 24 (0.5pt). In practice you would rarely need to implement your Library func-
own optimization algorithm. Use the R’s built-in optim function to find a tions

solution to your current optimization problem. Show the most basic way of

invoking this function.

Exercise 25* (0.5pt). The villagers just found out that their two data centers Constrained
may not be located further away from each other than 0.5km. I.e. the locations optimization
of the two data centers must satisfy

|U)1 - U)2| S 05

Do(es) the current solution(s) satisfy this requirement? Which points on the
contour plot satisfy it? Is it a convex set of points?

Exercise 26-28* (1.5pt). Let us implement constrained stochastic gradient Constrained
descent to help the villagers. Note that as our objective is not convex, this gradient de-
approach may not always work, but in this case it actually will. You need to scent

change your gradient descent implementation by adding a constraint check and

a projection step, i.e, you'll have something like:

for (i in 1:nsteps) {
xi = xi - wxdf(xi);
if (xi does not satisfy constraints) xi = project(xi)
traj = rbind(traj, xi)

}

The non-obvious part is the orthogonal projection onto the set {(wy,ws) :
|’U)1 — U}2| S 05}

Exercise 29-30* (1.0pt) Finally, it might be interesting to implement the Multidimensional
multidimensional Newton’s algorithm. As you should know by now, it will not Newton’s de-
work with the £(d) = |d| case, and it will work somewhat trivially for ¢(d) = d* scent

case. The next simplest choice is ¢(d) = |d|3>. Implement the correspond-

ing functions f, df, ddf (which will produce a matrix this time!), fix up your

newton_descent appropriately and see how it works.

