Software and Practical Methodology
2010-2014: a new deep learning toolkit is released every 47 days. 2015: every 22 days. tensorflow & caffe top github
2018

Online Job Listings

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
Number of papers on arxiv.org that mention a given framework

- TensorFlow: Up 23%
- PyTorch: Up 194%
- Keras: Up 26%
- Caffe: Down 29%
- Torch
- MXNet
- Theano
- Chainer
- CNTK

Source: Data from RISELab; graphic from gradientflow.com
Deep Learning Software

- Use web API
- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Deep Learning Software

Use web API

- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Use web API

Microsoft Azure cognitive services
https://azure.microsoft.com/en-us/services/cognitive-services/

Google Cloud AI
https://cloud.google.com/products/machine-learning/

AWS AI & ML Services
https://aws.amazon.com/machine-learning/
Use web API: pros and cons

- **GOOD:**
 - State-of-the-art models trained on huge datasets you would never have access to.
 - Very simple to integrate, does not require any deep learning knowledge.
 - Free trial versions.

- **BAD:**
 - Bandwidth requirements if your data is big (think videos).
 - Latency issues, when you need near real-time performance.
 - If your dataset is sensitive and you cannot upload it.
 - Maybe you just don’t have the money?

- **Use-cases:**
 - Quick deployment.
 - Short term cost of production.
 - Ideal for prototyping - if it proves useful, you can always run your own.
Deep Learning Software

- Use web API
- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Use pre-trained model

- **Keras** (only image classification models)
 https://keras.io/applications/
- **TensorFlow**
 https://www.tensorflow.org/hub
- **PyTorch**
 https://pytorch.org/hub/
- **Hugging Face** (Transformers)
 https://huggingface.co/models
- **Caffe** (comprehensive selection, but outdated)
 https://github.com/BVLC/caffe/wiki/Model-Zoo
- **Model Zoo**
 https://modelzoo.co/
- **Converters**
 https://github.com/ysh329/deep-learning-model-convertor
from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from keras.preprocessing import image

load model and pre-trained weights
model = ResNet50(weights='imagenet')

load image
img = image.load_img('elephant.jpg', target_size=(224, 224))

preprocess image
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

feed-forward pass through model
preds = model.predict(x)
print('Predicted:', decode_predictions(preds, top=3)[0])

Predicted: [('n02504458', 'African_elephant', 0.57238054), ('n01871265', 'tusker', 0.34006864), ('n02504013', 'Indian_elephant', 0.087232716)]
Example use-case for Pretrained model

We use:
Mask RCNN Demo

Mask R-CNN Image Segmentation Demo

This Colab enables you to use a Mask R-CNN model that was trained on Cloud TPU to perform instance segmentation on a sample input image. The resulting predictions are overlayed on the sample image as boxes, instance masks, and labels. You can also experiment with your own images by editing the input image URL.

About Mask R-CNN

The Mask R-CNN model addresses one of the most difficult computer vision challenges: image segmentation. Image segmentation is the task of detecting and distinguishing multiple objects within a single image. In particular, Mask R-CNN performs "instance segmentation," which means that different instances of the same type of object in the input image, for example, car, should be assigned distinct labels.

Instructions

Use a free Cloud TPU

1. On the main menu, click Runtime and select Change runtime type. Set "TPU" as the hardware accelerator.
2. Click Runtime again and select Runtime > Run All. You can also run the cells manually with Shift-ENTER.

Download the source code

Download the source code of the Mask R-CNN model.
If not required don’t use Deep Learning
CLIP Draw

Figure 1. **CLIPDraw iteratively synthesizes images through evaluation-time gradient descent.** Starting from a random set of Bézier curves, the position and colors of the curves are optimized so that the generated drawings best match the given description prompt. Before being passed into the CLIP encoder, drawings are augmented into multiple perspective-shifted copies.

Figure 2. **A typical CLIPDraw run gradually forms messy curves into concrete shapes.** In this example, the drawing first develops a background of star-shaped structures, which eventually develop into a large spaceship. Near the later iterations, more pronounced stars appear, in addition to a Darth Vader-like figure riding the spaceship.

Deep Learning Software

- Use web API
- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Fine-tune pre-trained model

1. Train on Imagenet

2. Small dataset: feature extractor
 - Freeze these

3. Medium dataset: finetuning
 - more data = retrain more of the network (or all of it)
 - Freeze these
 - Train this

NB! You can also use network as a feature extractor and train classifier on features!
When to use which option?

<table>
<thead>
<tr>
<th></th>
<th>Similar data</th>
<th>Dissimilar data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small dataset</td>
<td>Just train a new classification layer (or standalone classifier on extracted features).</td>
<td>Train a new classifier on top of lower convolutional layers.</td>
</tr>
<tr>
<td>Big dataset</td>
<td>Replace classification layer and fine-tune all layers.</td>
<td>Train a new network from scratch. Might be good idea to initialize couple of lower convolutional layers from pre-trained network.</td>
</tr>
</tbody>
</table>

from keras.applications import VGG16
from keras.models import Sequential
from keras.layers import Flatten, Dense

Load pre-trained model without classification layers (include_top=False)
conv_base = VGG16(weights='imagenet', include_top=False,
 input_shape=(150, 150, 3))

Freeze pretrained layers
conv_base.trainable = False

Add our own classification layers
model = Sequential()
model.add(conv_base)
model.add(Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(Dense(1000, activation='softmax'))
from keras.applications import VGG16
from keras.models import Sequential
from keras.layers import Flatten, Dense

Load pre-trained model without classification layers (include_top=False)
conv_base = VGG16(weights='imagenet', include_top=False,
 input_shape=(150, 150, 3))

Freezing all layers up to a specific one
set_trainable = False
for layer in conv_base.layers:
 if layer.name == 'block5_conv1':
 set_trainable = True
 layer.trainable = set_trainable

Add our own classification layers
model = Sequential()
model.add(conv_base)
model.add(Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(Dense(1000, activation='softmax'))

3. Medium dataset: finetuning
 more data = retrain more of the network (or all of it)
 Freeze these
 Train this
1. Add your custom network on top of an already trained base network.
2. Freeze the base network.
3. Train the part you added.
4. Unfreeze some layers in the base network.
5. Jointly train both these layers and the part you added.
Deep Learning Software

- Use web API
- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Software

The cool kids...
- TensorFlow
- Keras
- PyTorch

The alternatives...
- MXNet
- CNTK
- Caffe2
- Chainer

The retirees...
- Caffe
- Theano
- Torch
- Neon
Q: How do I know what architecture to use?

A: don’t be a hero.

1. Take whatever works best on ILSVRC (latest ResNet)
2. Download a pretrained model
3. Potentially add/delete some parts of it
4. Finetune it on your application.
Q: How do I know what hyperparameters to use?

A: don’t be a hero.

- Use whatever is reported to work best on ILSVRC.
- Play with the regularization strength (dropout rates)
Hyperparameters

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Starting value</th>
<th>Range / other options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning rate</td>
<td>0.001</td>
<td>$10^{-5} \ldots 10^{-1}$, powers of 10</td>
</tr>
<tr>
<td>Number of hidden layers</td>
<td>1</td>
<td>0, …, 101</td>
</tr>
<tr>
<td>Number of hidden nodes</td>
<td>128</td>
<td>32 … 4096, powers of 2</td>
</tr>
<tr>
<td>Conv. filter size</td>
<td>3</td>
<td>3, 5, 7, 11, at least two successive conv. layers with 3</td>
</tr>
<tr>
<td>Conv. number of filters</td>
<td>32</td>
<td>16 … 128, powers of 2</td>
</tr>
<tr>
<td>L2 regularization</td>
<td>0</td>
<td>$10^{-5} \ldots 10^{-1}$, powers of 10</td>
</tr>
<tr>
<td>Dropout</td>
<td>0</td>
<td>0.1, 0.2, 0.3, 0.4, 0.5</td>
</tr>
<tr>
<td>Activation function</td>
<td>relu</td>
<td>tanh, LeakyReLU, PReLU, ELU</td>
</tr>
<tr>
<td>Weight initialization</td>
<td>glorot_uniform / xavier</td>
<td>he_normal</td>
</tr>
<tr>
<td>Mini-batch size</td>
<td>32</td>
<td>1-256, powers of 2, GPU mem!</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
<td>RMSProp, SGD+Momentum</td>
</tr>
<tr>
<td>Momentum</td>
<td>0.9</td>
<td>0.5, 0.9, 0.95, 0.99</td>
</tr>
</tbody>
</table>
Hyperparameter search

- **Coordinate descent**
 - Find the best value for one hyperparameter, then pick the next.
 - Beware of correlations, i.e. learning rate and regularization!

- **Grid search**
 - Try all possible combinations.
 - Combinatorial explosion!

- **Random search**
 - If you try 4 values for 2 hyperparameters, you make 4x4=16 evaluations. What if one HP was completely unimportant? Then you learn only about 4 different values for the other parameter.
 - If you instead sample randomly from given range, you get evaluations at 16 different values of both hyperparameters.

- **Hyperopt / Spearmint / BayesOpt / SigOpt / HyperBand / AutoML**
 - Might be useful to establish initial range or fine-tune manually chosen values.
 - No silver bullet! At some point the curse of dimensionality kicks in.
 - About 5 HPs should be fine, some claim success with 20.
The process

Start simple
- Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Implement & debug
- Once model runs, overfit a single batch & reproduce a known result

Evaluate
- Apply the bias-variance decomposition to decide what to do next

Tune hyperparams
- Use coarse-to-fine random searches

Improve model/data
- Make your model bigger if you underfit; add data or regularize if you overfit

READ!

Slide from Josh Tobin, Troubleshooting Deep Neural Networks
Interlude: practicalities
Monitoring - use TensorBoard

TensorBoard

Write a regex to create a tag group

- Show data download links
- Ignore outliers in chart scaling
 Tooltip sorting method: default

Smoothing

0.6

Horizontal Axis

STEP RELATIVE WALL

Runs

Write a regex to filter runs

- n_samples_1/20170530_141631
- n_samples_5/20170530_141605

TOGGLE ALL RUNS

log

parameter

loss

Gradient norm

loss

loss/kl_penalty

loss/p_log_lik
Monitoring

- Handling of different runs - save each run to separate folder, so that they can be compared in TensorBoard.
- Save weights regularly and make sure your code can resume training from saved weights.

In Keras:

```python
model.fit(X_train, y_train, batch_size=32, epochs=10, callbacks=[
    callbacks.TensorBoard(log_dir=log_dir),
    callbacks.ModelCheckpoint(os.path.join(log_dir, 'model.h5'),
                            monitor='val_acc', verbose=1, save_best_only=True)])
```

Loading model:

```python
from keras.models import load_model
model = load_model(model_path)
```
MLOps

The developer-first MLOps platform
Build better models faster with experiment tracking, dataset versioning, and model management

SIGN UP
REQUEST DEMO

Personal
Free
Personal accounts

- For personal projects only. Corporate use not allowed, must use Starter or Enterprise plans.
- Unlimited experiments
- Unlimited tracked hours*
- 100 GB storage and artifacts tracking included. For additional storage, see prices.
Hardware: university resources

- Rocket (https://www.hpc.ut.ee/)

6 GPU nodes, falcon1-6, purchase funded by Institute of Computer Sciences:

- 2 x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (48 cores total)
- 512 GB RAM
- 5TB of local SSD storage
- Infiniband:
 - Falcon 1-3 – 2x 40 Gbps each
 - Falcon 4-6 – 5x 100 Gbps each
- 24x NVIDIA Tesla V100 GPUs:
 - Falcon3 versions have 16 GB of VRAM.
 - Falcon 4-6 versions have 32 GB of VRAM.
Send e-mail to support@hpc.ut.ee with your username and supervisor to get access!

Logging in:
ssh username@rocket.hpc.ut.ee

Once logged in, peeking to GPU nodes:
ssh falcon1

See what GPUs are doing (only on GPU nodes):
nvidia-smi
Scheduling your jobs with SLURM

See nodes and partitions in the cluster:
sinfo

See currently queued jobs:
squeue
squeue -u myusername
squeue -p gpu

Run a new job in Rocket cluster:
srun -p gpu --gres=gpu:tesla:1 -t 3600 python train_cats_and_dogs.py

partition gpu request one Tesla gpu your job takes max an hour NB! All environment variables are retained!
Hardware: free resources on the internet

Google Colab (https://colab.research.google.com)
- Jupyter notebook, Tesla K80 GPU 12GB RAM or Google TPU, max 12 hours

Kaggle Kernels (https://www.kaggle.com/kernels)
- Jupyter notebook, Tesla K80 GPU 11GB RAM, max 6 hours

Google Cloud GPUs (https://cloud.google.com/gpu/)
- Tesla K80, P100, P4, T4, and V100 GPUs, $300 credit for free

Amazon SageMaker (https://aws.amazon.com/sagemaker/)
- Apply for free credits at www.awseducate.com!

Azure Notebooks (https://notebooks.azure.com/)
- 4GB memory limit, no GPUs?
Hardware: build yourself

- NVidia DevBox
 https://developer.nvidia.com/devbox

- Building a Deep Learning (Dream) Machine
 http://graphific.github.io/posts/building-a-deep-learning-dream-machine/

- Which GPU(s) to Get for Deep Learning
 - https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
Deep Learning Software

Use web API
Use pre-trained model
Fine-tune pre-trained model
Train your own model
Custom layers/losses/architectures
Research on neural networks
What do we need to change for a task?

\[\begin{align*}
(a \cdot \tilde{x}) + b &= \tilde{x} \\
\tilde{z} &= \{z_1, z_2, \ldots, z_c\} \\
\text{softmax}(\tilde{z}) &\rightarrow p = (p_1, p_2, \ldots, p_c) \\
L &= -\sum_{i=1}^{c} y_i \log p_i = -\log p_c \\
y &= (y_1, y_2, \ldots, y_c)
\end{align*} \]
Schroff F., Kalenichenko D., Philbin J., FaceNet: A Unified Embedding for Face Recognition and Clustering
1. Pass three face images through convolutional network: anchor image, image of the same person, and image of another person.
2. Make the distance between anchor and the same person smaller than distance between anchor and another person (by some margin).

![Triplet loss diagram](image)

\[
\sum_{i}^{N} \left[\| f(x^a_i) - f(x^p_i) \|_2^2 - \| f(x^a_i) - f(x^n_i) \|_2^2 + \alpha \right]_+
\]

Schroff F., Kalenichenko D., Philbin J., *FaceNet: A Unified Embedding for Face Recognition and Clustering*
FaceNet architecture

- Anchor image
 - CNN
 - Fully-connected
 - L2 normalization
 - Anchor embedding

- Positive image
 - CNN
 - Fully-connected
 - L2 normalization
 - Posit. embedding

- Negative image
 - CNN
 - Fully-connected
 - L2 normalization
 - Negat. embedding

- Triplet loss

\[\sum_{i}^{N} \left[\| f(x_i^a) - f(x_i^p) \|^2_2 - \| f(x_i^a) - f(x_i^n) \|^2_2 + \alpha \right]_+ \]
Summary

● **Use Lambda layer** to implement simple computational steps
 ○ Familiarize yourself with keras.backend functions for this!

● **Implement custom loss functions** using keras.backend.
 ○ Need to be inventive to work around keras limitations.

● **Write your own Layer class for trainable weight layers.**
 ○ See this: https://keras.io/layers/writing-your-own-keras-layers/

● **If your model does not have target values, you need to hack around.**
 ○ Keras assumes the network always has inputs and outputs, and outputs have target values. It is not the case with many advanced models.
Deep Learning Software

- Use web API
- Use pre-trained model
- Fine-tune pre-trained model
- Train your own model
- Custom layers/losses/architectures
- Research on neural networks
Sinusoid approximation

\[y = \sin(x) \]

\[h_i = f(w_i x + b_i) \]

\[y = \sum_i v_i h_i + c \]

\[f(x) = \frac{1}{1 + e^{-x}} \]

Summary

- While neural networks can be universal approximators, they only interpolate between training points, they do not extrapolate.
 - Outside of training data they are generally useless.

- To generalize better, we need to induce priors in our networks.
 - Examples of successful priors are convolution (translation invariance), attention, recurrence, residual connections, etc.

- Do not think of network as sequence of layers, think of it as differentiable computation. What computation would solve given problem?
 - You can always figure out the unknown coefficients in this computation using gradient descent and backpropagation.
Automatic differentiation

GOOD:
● Google support.
● A lot of tutorials and examples.
● Backpropagation for most basic ops already implemented.

BAD:
●Verbose
●Big and clunky?
●Slow compile step?

GOOD:
● Research community support.
● Many latest models implemented.
● Control over all aspects, easy debugging.

BAD:
● Slightly archaic, not as polished as TensorFlow/Keras.
● Have to manually implement backprop for custom layers.

https://medium.com/data-science-at-microsoft/a-tale-of-two-frameworks-pytorch-vs-tensorflow-f73a975e733d
JAX: Autograd and XLA

Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs

What is JAX?

JAX is Autograd and XLA, brought together for high-performance machine learning research.

With its updated version of Autograd, JAX can automatically differentiate native Python and NumPy functions. It can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.

What’s new is that JAX uses XLA to compile and run your NumPy programs on GPUs and TPUs. Compilation happens under the hood by default, with library calls getting just-in-time compiled and executed. But JAX also lets you just-in-time compile your own Python functions into XLA-optimized kernels using a one-function API, jit. Compilation and automatic differentiation can be composed arbitrarily, so you can express sophisticated algorithms and get maximal performance without leaving Python. You can even program multiple GPUs or TPU cores at once using pmap, and differentiate through the whole thing.
Summary

- Feel free to use the available work (model, architecture, hyperparameters) and build on top of it.
- Start with the best reported defaults and then make changes to suit your problem.
- Simple solution is the best solution as long as it fulfills all the requirements.
- Well maintained code, experimental setup will go a long way in helping you to be more efficient and hence more successful.
Summary

- An important tip for any ML project, in whatever way you can, check what finally goes into your model (what are you training on?).

Questions?

tarunkhajuria42@gmail.com