Lecture 9
Contextual word embeddings

LTAT.01.001 – Natural Language Processing
Kairit Sirts (kairit.sirts@ut.ee)
14.04.2021
Plan for today

● Word senses
● Contextual word embeddings
● ELMo
● Transformers
● BERT
Word senses
Word Senses

- One lemma “bank” can have many meanings:

 Sense 1:
 - ...a **bank** can hold the investments in a custodial account...

 Sense 2:
 - “...as agriculture burgeons on the east **bank** the river will shrink even more”

- **Sense (or word sense)**
 - A discrete representation of an aspect of a word’s meaning.

- The lemma **bank** here has two senses
Homonymy

Homonyms: words that share a form but have unrelated, distinct meanings:

- bank$_1$: financial institution, \(\text{bank}_2 \): sloping land
- bat$_1$: club for hitting a ball, \(\text{bat}_2 \): nocturnal flying mammal

1. **Homographs**
 - In English: bank/bank, bat/bat
 - In Estonian: tee/tee

2. **Homophones:**
 - In English: write and right, piece and peace
 - In Estonian: baar and paar, ball and pall
Polysemy

- 1. The **bank** was constructed in 1875 out of local red brick.
- 2. I withdrew the money from the **bank**
- Are those the same sense?
 - Sense 2: “A financial institution”
 - Sense 1: “The building belonging to a financial institution”
- A **polysemous** word has **related** meanings
 - Most non-rare words have multiple meanings
Sense information in word embeddings

- Embedding systems like Word2Vec or Glove include one embedding per word.

- All different meanings are conflated into a single vector.

- This can result in semantically unrelated words being pulled together.

Source: Camacho-Collados and Pilehvar, 2018.
From word to sense embeddings: A survey on vector representations of meaning.
Solving the sense problem in word embeddings

- Option I: just ignore it
- Option II: Devise methods to learn sense embeddings, i.e. one vector per sense. This is related to various problems:
 - How many senses does each word have?
 - For instance, the word “bass” has 9 senses in English WordNet
 - Wordnet: a hierarchically organized lexical database that includes concepts and their relations (synonyms, antonyms, is-a relation, is-part-of relation etc)
Noun

- **S**: (n) bass (the lowest part of the musical range)
- **S**: (n) bass, bass part (the lowest part in polyphonic music)
- **S**: (n) bass, basso (an adult male singer with the lowest voice)
- **S**: (n) sea bass, bass (the lean flesh of a saltwater fish of the family Serranidae)
- **S**: (n) freshwater bass, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- **S**: (n) bass, bass voice, basso (the lowest adult male singing voice)
- **S**: (n) bass (the member with the lowest range of a family of musical instruments)
- **S**: (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny–finned fishes)

Adjective

- **S**: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"
Solving the sense problem in word embeddings

● Option I: just ignore it

● Option II: Devise methods to learn sense embeddings, i.e. one vector per sense. This is related to various problems:
 ● How many senses does each word have?
 ● For instance, the word “bass” has 9 senses in English WordNet
 ● Wordnet: a hierarchically organized lexical database that includes concepts and their relations (synonyms, antonyms, is-a relation, is-part-of relation etc)
 ● Can group senses into larger clusters:
 • bass – music related
 • bass – fish related

● Option III: contextual word embeddings
Contextual word embeddings
Contextualized word embeddings

- Essentially large language models
- Pretrained on large amounts of unannotated data
- The representation of each word is constructed based on its context.
- The word “bank” in the following two sentences will have a different representation:
 - …a **bank** can hold the investments in a custodial account…
 - “…as agriculture burgeons on the east **bank** the river will shrink even more”
- Thus, contextual word embeddings address the problem of different senses
Contextualized word embeddings

- Recent trend in NLP
- Pre-train deep contextualized word embeddings
- Nice illustrated tutorial in: http://jalammar.github.io/illustrated-bert/
ELMo
ELMo – Embeddings from Language Models

- Peters et al., 2018. Deep contextualized word representations that model:
 - Syntax and semantics of the word use
 - How the uses of the same word vary in different contexts (polysemy)

- Main characteristics
 - Contextual
 - Deep
 - Character-based
Language model for ELMo

Possible classes:
- 0.1% Aardvark
- 10% Improvisation
- 0% Zyzzyva

Output Layer

LSTM Layer #2

LSTM Layer #1

Embedding

FFNN + Softmax

Let's stick to
Language model for ELMo
Training the language model

● The loss is the sum for forward and backward probabilities of all words in the sentence
\[\sum_{i=1}^{n} \left(\log p(w_i|w_1, ..., w_{i-1}) + \log p(w_i|w_{i+1}, ..., w_n) \right) \]

● The word representation and output layer parameters are the same for both forward and backward LSTMs

● The parameters of the forward and backward LSTMs are different
Character-based input

- The input representations for all words are composed with CNN
- For the same word (e.g. bank) this representation is always the same, regardless of possible different meanings
- In a sense, after training, this layer conforms to static word embeddings
- Most analogous to FastText
- The layer is quite large (at least in the original paper)
 - 2048 n-gram filters
 - Two highway layers
 - Then projected down to 512-dimensional vectors
What is ELMo?

- Task-specific combination of the language model layer representations
- For each token, there are $2L+1$ representations in a L-layer language model
- ELMo constructs a single token vector from all these representations
- Possible ways of doing it:
 - Take the concatenation of forward and backward representations from the last layer
 - Task-specific weighting of all language model layers
1- Concatenate hidden layers

\[h_2 \]

\[h_1 \]

\[h_0 \]

2- Multiply each vector by a weight based on the task

\[\times s_2 \]

\[\times s_1 \]

\[\times s_0 \]

3- Sum the (now weighted) vectors

\[h = \gamma (s_0 h_0 + s_1 h_1 + s_2 h_2) \]

\(\gamma, s_i \) - task-specific parameters

\(s_i \) are softmax normalized

ELMo embedding of “stick” for this task in this context
Using ELMO representations

1) Use instead or in addition to static word embeddings in an RNN-based model.
 - Train an RNN-based model with relevant classifiers on top of the ELMo representations
 - More costly, potentially more accurate

2) Use instead of the RNN
 - Train only the classifier layer on top of the ELMo representations
 - Less costly, might still be quite accurate
Transformer
Attention is all you need
Vaswani et al., 2017

- A sequence to sequence model based on attention

- Strong results on standard machine translation benchmark datasets

- Fast (???) because it does not include recurrent networks
Attention tricks

● **Self-attention**: each layer combines words with others

● **Multi-headed attention**: 8 attention heads learn independently

● **Normalized dot-product attention**: remove bias in dot product when using large networks

● **Positional encodings**: as the model does not use an RNN, a mechanism is needed to distinguish different input positions
Self-attention

- Each layer combines words with others with scaled dot product attention

\[
a(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

- Q – queries
- K – keys
- V – values
- In self-attention Q == K == V
 - because each word is a query in turn
Multi-head attention

- Project keys, queries and values into several different sub-spaces
 \[Q_i = QW_i^Q, \quad K_i = KW_i^K, \quad V_i = VW_i^V \]

- For each attention \(i \) compute a head
 \[\text{head}_i = a(Q_i, K_i, V_i) \]

\[\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O \]
Positional encodings

- Positional encodings are added to input embeddings in both encoder and decoder
 - The embeddings and positional encoding are summed

- Positions are encoded with sine and cosine functions of different frequencies

\[
PE_{(pos,2i)} = \sin(\frac{pos}{10000^{2i/d_{model}}})
\]
\[
PE_{(pos,2i+1)} = \cos(\frac{pos}{10000^{2i/d_{model}}})
\]
Masking for training

- Because there is no recurrence many operations can be done in parallel
- However, we cannot “know” the future before it has arrived.
- To simulate that, the self-attention layer in the decoder is masked

kono eiga ga kirai I hate this movie</s>

Source: Attention lecture by Graham Neubig
Transformer summary

- Transformer is a powerful attention-based feedforward building block
- Typically several transformer layers are used in a model
- It can be used as an encoder-decoder model
 - modern machine translation systems are based on transformer architecture
BERT
BERT: Bidirectional Encoder Representations from Transformer

- Devlin et al., 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

- Main characteristics
 - Bidirectional
 - Very deep

- Key components
 - Masked language model
 - Auxiliary “next sentence prediction” task
Input to the BERT
Masked language model

Use the output of the masked word’s position to predict the masked word

Randomly mask 15% of tokens
Masked language model

- Randomly choose 15% of training tokens for masking
- From those:
 - Mask the token 80% of the time
 - replace the token with another random word 10% of the time
 - Leave the token unchanged 10% of the time

- This masking procedure is done because there is a mismatch between pre-training and later fine-tuning as there is no MASK token during finetuning
Next sentence prediction task

- In order to facilitate tasks that rely on two input sequences:
 - question answering
 - textual entailment

- Sentences are chosen into pretraining so that 50% of the time the sequence B is an actual next sentence to the sequence A.
- 50% of the time sequence B is not an actual sequence to sentence A, but a random sentence from the input corpus.

- The sequence-initial CLS token representation is used to train a binary classifier to discriminate between these two cases.
Next sentence prediction task

Predict likelihood that sentence B belongs after sentence A
Validation on external tasks

- During training the masked LM and next sentence classification accuracy can be monitored on an evaluation set.
- Masked LM and next sentence prediction tasks are auxiliary training objectives.
- The goal is to train models that would provide good input representations for subsequent tasks.
- It is a good idea to also monitor the model training on external tasks:
 - text classification
 - sequence tagging
- While training the BERT, take subsequent checkpoints and use as basis for training the external tasks.
- Monitor the test performance of the external tasks over the sequence of BERT checkpoints.
Task-specific fine-tuning: input

- Plug in task-specific inputs
- Two input sequences for tasks like:
 - question answering
 - textual entailment
 - paraphrase pairs etc
- One input sequence for:
 - text classification
 - morphological/syntactic tasks
 - NER etc
Task-specific fine-tuning: output

- For classification tasks:
 - Fit a dense classification layer + softmax on top of the CLS representation
 - The classifier can be also more complex: several dense layers with non-linearity in between
 - Can construct the document representation also by averaging the token representations

- For sequence tagging tasks:
 - Fit a dense classification layer + softmax on top of each token representation
 - Use the first piece of each token to represent the word (remember: the input was subword tokenized)
Task-specific fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA
Task-specific fine-tuning

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER
Available BERT models

- Huggingface transformers library offers good access to available BERT models: https://huggingface.co/transformers/
- Cased and uncased models
- Smaller and larger models:

<table>
<thead>
<tr>
<th>BERT base</th>
<th>BERT large</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 layers</td>
<td>24 layers</td>
</tr>
<tr>
<td>hidden size 768</td>
<td>hidden size 1024</td>
</tr>
<tr>
<td>12 heads</td>
<td>16 heads</td>
</tr>
<tr>
<td>110M parameters</td>
<td>340M parameters</td>
</tr>
</tbody>
</table>

- First models masked out sub-word tokens, now available models that mask out whole words
Non-English BERT models

- BERT models are available for several languages, including:
 - Chinese
 - German
 - Japanese
 - Finnish
 - Dutch

- These models are also available via huggingface transformers library

- We have also trained a model for Estonian that is available:
 https://huggingface.co/tartuNLP
Multilingual BERT models

Several multilingual BERT models are available via huggingface transformers library

- **Bert base multilingual cased:**
 - trained on 104 largest Wikipedia languages
 - 110 shared WordPiece vocabulary
 - includes languages like Estonian, Russian, Ukraine

- **There are also other BERT-like models:**
 - XLM masked LM trained on 100 languages
 - DistilmBERT distilled from multilingual BERT model
 - XLM RoBERTa large trained on 100 languages
In conclusion

- Contextual word embeddings offer a general representational component for many NLP tasks.
- They help to improve the models especially in low resource setting.
- Major results in NLP during the last decade:
 - static word embeddings
 - recurrent neural networks
 - encoder-decoder networks
 - attention mechanism
 - Transformer architecture
 - Pre-trained contextual word embedding models
- They have opened an area for lots of research and experiments for many languages and tasks.