Arvutiteaduse instituut
  1. Kursused
  2. 2013/14 kevad
  3. Masinõpe (MTAT.03.227)
EN
Logi sisse

Masinõpe 2013/14 kevad

Previous years: 2008 » 2012 » 2013

  • Main
  • Lectures
  • Exercise sessions
  • Grading

VI. Neural networks

Given by Sven Laur

Brief summary: Neural networks as a toolbox for approximating complex functions. Generalised linear models and the conceptual design of a feed-forward network. Hidden layer as an adaptive and non-linear map to higher feature space. Sigmoid functions and radial-based functions as standard ways to build non-linear mapping. Backpropagation algorithm as an efficient gradient decent procedure. Higher-order methods for minimising the training error. Computer vision and invariance under shifts and rotations. Training methods for forcing this type of invariance.

Slides: PDF

Video: UTTV

Literature:

  • Bishop: Pattern Recognition and Machine Learning pages 225 - 272

Complementary exercises:

  • Bishop: Pattern Recognition and Machine Learning pages 284 - 290
  • Use neural networks for the classification and prediction for various datasets listed below and compare the results obtained in the earlier exercise sessions
    • Iris dataset
    • Computer Hardware Data Set
    • Housing Data Set
    • Datasets for testing linear regression models
  • Build a translation invariant neural network for distinguishing numbers in Semeion Handwritten Digit Data Set
    • First, use random small translations to increase the data set.
    • Second, use tangent propagation method.
    • Try two-class versus multi-class classification tasks.

Free implementations:

  • Nnet package in R for feed-forward neural networks
  • Neuralnet package in R for feed-forward neural networks
  • A more flexible neural network package in R
  • PYBrain: A Python implementation of feedforwad neural networks
  • Shark machine-learning library for C++
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo