Arvutiteaduse instituut
  1. Kursused
  2. 2013/14 kevad
  3. Masinõpe (MTAT.03.227)
EN
Logi sisse

Masinõpe 2013/14 kevad

Previous years: 2008 » 2012 » 2013

  • Main
  • Lectures
  • Exercise sessions
  • Grading

XIII. Elements of Statistical Learning Theory

Given by Sven Laur

Brief summary: Bias-variance dilemma revisited. Training and testing data as iid samples from the distribution of future challenges. Confidence bounds on cost estimations via Monte-Carlo integration. Why is does the training error underestimate future costs. Case study for the finite function set. Bias in training error and its connection to union-bound and multiple hypothesis testing. Consistency and identifiability properties. VC-dimension as a way to estimate bias in training error. Rademacher complexity and its connection to the bias in the training error. Limitations of statistical learning theory.

Slides: PDF

Video: UTTV

Literature:

  • Cristianini & Shawe-Taylor: Support Vector Machines: Generalisation Theory (Chapter 4)
  • Bartlett & Mendelson: Rademacher and Gaussian Complexities: Risk Bounds and Structural Results
  • David MacKay: Information Theory, Inference, and Learning Algorithms: Capacity of a Single Neuron

Complementary exercises:

  • Estimate the difference between training and test errors for different classifiers
    • Draw data from linearly separable model with some gaussian random shifts
    • Try various linear and non-linear classifiers
    • Plot the discrepancy as a function of training sample size
    • Draw data form more complex model that cannot be represented by predictor classes
    • Repeat the procedure
    • Estimate VC and Rademacher complexities and see if SLT bounds coincide with practice
  • Estimate the difference between training and test errors for different prediction algorithms
    • Draw the data form a linear model
    • Try various linear and non-linear predictors
    • Plot the discrepancy as a function of training sample size
    • Draw data form more complex model that cannot be represented by predictor classes
    • Repeat the procedure
    • Estimate VC and Rademacher complexities and see if SLT bounds coincide with practice

Free implementations:

  • None that we know
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo