Arvutiteaduse instituut
  1. Kursused
  2. 2013/14 sügis
  3. Krüptoloogia II (MTAT.07.003)
EN
Logi sisse

Krüptoloogia II 2013/14 sügis

Previous Years: 2008 » 2009 » 2010 » 2012

  • About
  • Lectures
  • Homeworks
  • Admininistation

Grading

 HW1S1HW2S2HW3S3HW4S4HW5S5HW6HW7S7HW8Sum%
Ivo1.00.01.00.00.50.01.00.01.00.01.01.00.01.07.794%
Filipp0.50.01.00.00.50.00.50.01.00.01.00.50.00.55.569 %
Prastudy1.01.51.00.00.50.01.00.01.01.01.01.00.00.58.5107%

First homework

Typeset a short proof similarly to the example provided below

  • Example proof
  • Example LaTeX code

Copy the LaTeX code files into your favourite directory and try to compile it with LaTeX. If this succeeds then modify the corresponding tex file and type in the proof analogously. Send the corresponding LaTeX file together with compiled PDF file to me. The deadline is 20 September 23:59 EET. In case of problems contact me.

Assigmnents

  • Ivo: 0104-random-self-reducibility-of-dl.tex
  • Filipp: 0105-random-self-reducibility-of-cdh.tex
  • Prastudy: 0109-simplified-random-self-reducibility-of-ddh.tex

Star exercises

  • Provide the full proof for randomised self-reducibility of DDL
  • Prove or disprove that the perfect ability to extract two consecutive bits of DL is sufficient for the full recovery of the DL.

Second homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

Assigmnents

  • Ivo: 0201-from-expected-running-time-to-strict-running-time.tex.tex
  • Filipp: 0203-standard-combiner-contruction.tex
  • Prastudy: 0202-amplification-by-majority-voting.tex

Note that I have changed the exercise for Filipp. The change is cosmetic. The original exercise was not meaningful while the new formalisation makes sense. Also in the original exercise advantages of all sub-adversaries where the same, while here they can be different. In terms of proof it does not add any new important details. The same proof still works.

Extra star exercise about malleability

  • Attach:0408-non-malleability-for-fixed-relation.tex

The deadline is 29 September 23:59 EET

Third homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

All of you get the same exercise. However, if you are bored then you can try to consider SNM-CCA1 and SNM-CCA2 security notions instead of SNM-CPA.

The deadline is 6 October 23:59 EET

Fourth homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

The deadline is 25 October 23:59 EET

Fifth homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

The deadline is 29 October 23:59 EET

The star exercise is the more precise analysis of the 2PRE => OW reduction, see the archive file

The deadline is 2 November 23:59 EET

Sixth homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

The deadline is 17 November 23:59 EET

Seventh homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

The deadline is 24 November 23:59 EET

Eight homework

Complete the proofs given in the archive file. If the files do not compile add missing style and template files from the archive of files given out for the first exercise.

The deadline is 8 December 23:59 EET

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo