System Administration

Maintenance
Monitoring

http://courses.cs.ut.ee/2012/syshald/
Outline

- No test results yet! Next week?
- Maintenance
- Monitoring
Maintenance

- Objective of the maintenance process is to constantly keep the system in desired state
- Maintenance is often handled in a similar way as change
Maintenance (2)

• Maintenance can be divided by
 – Regularity
 • regular – based on schedule
 • irregular – based on need
 – Criticality
 • Routine – low failure probability
 • Sensitive – significant failure probability
 • Major – system is about to fail without maintenance
Maintenance

entropy

maintenance

desired/known state

unknown state
Maintenance (4)

• Planning the Maintenance
 - Pre-maintenance
 • maintenance procedures must be pre-planned
 • prerequisites and risks must be accounted for
 • there must be a back-out plan
 • in some sites, critical maintenance must be approved by a committee
Maintenance (5)

• Communicating the Maintenance
 - some maintenance procedures require downtime
 - customers are informed about sensitive and critical maintenance
 • even if it is regular
 - no need to inform about routine maintenance
 - two-step communication
 • long-term pre-announcement
 • repeat just before maintenance
Maintenance (6)

• Automating the Maintenance
 - many maintenance procedures can be (semi-)automated
 - more flexible schedule
 • procedures can be run at any moment
 - Faster procedures
 • time spent on developing the procedure is quickly compensated
 - reduces the risk of human errors
Maintenance (7)

• Documenting the Maintenance
• Post-maintenance
 - keep maintenance log/record
 • activities performed, results
 • time of maintenance
 • persons responsible
 - test and monitor for unwanted side effects
Maintenance (8)

- Software Maintenance
 - software updates
 - security updates
 - bug fixes
 - functionality updates
 - other procedures
 - configuring
 - log maintenance
 - package audit
Maintenance (9)

• Software Updates
 - (semi-)automatic updates for masses, manual updates for critical systems
 - mass updates must be tested, but fully automated (with no testing) updates are still way better than no updates
 - take extra caution when updating software on critical systems
Maintenance (10)

• Hardware Maintenance
 - details containing moving parts...
 - changing the BIOS, RAID-controller, etc. batteries
 - firmware updates
 - hardware errors are not visible to end-user in redundant systems
 • disaster waiting to happen
 • mitigate the risk by monitoring
 • routine maintenance only, if done right
Maintenance (11)

• Hardware Maintenance
 - specific skills required
 • maintenance manuals from manufacturer
 • specialist know-how
 • specialist experience
 - you are dealing with physical objects
 • you cannot just “take back” any step
 • risk of injury
Maintenance (12)

- User Account Maintenance
 - operations
 - creating
 - setting the permissions and roles
 - changing (re-setting) the password
 - blocking and removing
Maintenance

- User Account Maintenance
 - high security risks
 - have fixed set of authorized persons to perform user account maintenance
 - maintenance procedures and rules must be specific, strict and must not be changed by the persons performing them
 - User Account Maintenance vs. Identity Management
Maintenance (14)

- maintenance is a “soft” form of risk management
 - helps to avoid incidents and disasters
 - mitigates the effects
- costs less than disaster recovery
- stress levels are way lower compared to disaster recovery

rule of thumb: if it is not broken, don't fix it
Monitoring

- objective of the monitoring process is to constantly and systematically provide structured information about the state of the system
Monitoring (2)

- various monitoring objectives
 - (real-time) overview
 - incident discovery
 - including alarms & notifications
 - support for problem management
 - support for planning
 - including capacity management
Monitoring (3)

• Monitoring Coverage
 - always cover the base resources:
 • storage
 • CPU load (computing power)
 • network (bandwidth)
 - critical resources specific to the system
 - services offered by the system
Monitoring (4)

- Monitoring Coverage
 - physical environment
 - keep irrelevant information “on the background”
 - relevancy may change in time
Monitoring (5)

• Accuracy and interval
 – when interpreting the monitoring data, you must know the measuring accuracy
 – the second “dimension” of accuracy is the interval: the amount of time between two measurements
 – shorter interval gives better overview
 • but...
 – ...also increases the load. Find a compromise
 – Monitoring software defaults are often good
Monitoring (6)

- Measurement Scale
 - scale – the range for presenting the monitoring results
 - it is not always desirable to have scale covering all the possible measurement values
 - upper and lower limits are set, values outside the scale are “cut”
 - scale does not have to be linear
Monitoring (7)

- Monitoring Scale: a negative example

- Logarithmic scale would be better
Monitoring (8)

- Short-term (Operative) Monitoring
 - manually started by the system administrator
 - limited duration
 - more values measured (possibly with higher accuracy)
 - shorter interval
 - used during incident and problem resolution
 - higher load for the system
Monitoring (9)

• Short-term Monitoring cycle
 – 1. monitor, collect results
 – 2. analyze
 – 3. try to apply the analysis results in the problem solving process
 – 4. if no success, go to 1
Monitoring (10)

- Long-term Monitoring
 - fully automated
 - longer intervals
 - Lower load on the system
 - can be divided to:
 - historical monitoring
 - for planning, capacity management, reporting
 - real-time monitoring
 - for early discovery and alerting
Monitoring (11)

- Service Monitoring
 - service availability monitoring
 - is the query being answered
 - is the query being answered as expected
 - is the query being answered in expected time

- availability monitoring systems are often run separately from base resource monitoring systems
Monitoring (12)

• Monitoring Tools
 – tools shipped with operating systems
 – monitoring the base resources
 • \textit{top, iotop, Windows Task Manager, ...}
 – usually not enough
 – specialized monitoring software
 • Nagios, Munin, Ganglia, arpwatch
 – usually can be extended with plug-in's
Monitoring (13)

• Monitoring Output
 - we need a clear overview
 • and..
 - we need detailed information on resources
 - gather and keep detailed information, but also generate visual output:
 • graphs, diagrams, maps, ...
 • Use automated tools for this
Monitoring (14)

- Long-term monitoring results give us ability for:
 - historic:
 - planning the changes and capacities
 - reporting and documenting
 - risk management
 - maintenance
 - real-time
 - incident discovery and alerting
 - pro-active monitoring
Monitoring (15)

• Short-term monitoring results give us ability for:
 - solving incidents and problems
 - detail changes
 - testing and maintenance
Activity (15-20 min)

- From groups of 5
- Familiarize with “unit testing” concept from software development
- Discuss whether this concept is directly usable in system availability monitoring. Pros and cons.
- Present!
Activity (15-20 min)

• When developing software
 – Is it wise to write tests for functional units also?
 • Functional unit is set of classes/modules/etc. which perform an activity described in single functional requirement
 – Is it wise to combine functional unit tests to single application/framework?

• When administrating a system
 – Could we make use of functional units test framework on system availability monitoring?
Activity (15-20 min)

- Potential side-effects of demanding functional unit test code from software vendor/developer
 - Developer actually has to write tests!
 - Software will probably cost more
 - Software will probably have less bugs
 - Software will probably have better uptime due to thorough availability monitoring
Questions?