Agenda

- Wireless sensor networks
- Self Organization
- Challenges
Wireless Sensor Networks

- A network of sensor nodes to cooperatively monitor physical or environment conditions
- Sensor nodes can be deployed in hard to access remote locations
- Can survive harsh environments
Wireless Sensor Networks cont...

- **Sensor node**
 - **Power source**
 - Cells, vibrations, solar, temperature difference
 - **Processor and memory**
 - Microcontrollers, microprocessors, DSPs, FPGAs, ASICs
 - Mostly on chip memory and flash memory
 - **Sensors**
 - Current, Water flow, Liquid level, Load cell, Ultrasound, Distance Foil, Temperature, Humidity, Luminosity …
 - **Radio or Transceiver**
 - IR, RF, Optical
Wireless Sensor Networks cont...

Mica2Dot mote (25mm)

Mote sensor board

Waspmote

Event detection board for Waspmote
An application, Monitoring a large area for environmental conditions such as temperature, level of gases etc.

- Deployment
 - Random or organized
 - Dense or sparse

- Discovery and configuration
 - Discovery of neighboring nodes
 - Topology construction for the network

- Maintenance

- Routing

- Cooperative algorithms
Self Organization

- “a system is self organizing if a collection of units coordinate with each other to form a system that adapts to achieve a goal more efficiently” [T.Collier]

- “Self-organization is a process in which structure and functionality (pattern) at the global level of a system emerge solely from numerous interactions among the lower-level components of a system without any external or centralized control. The systems components interact in a local context either by means of direct communication or environmental observations without reference to the global pattern” [WSNs a survey]
Self Organization cont...

- **Self organization**
 - Sensor network consist of *small units* called sensor nodes
 - Sensor nodes have their *own state and behavior*.
 - Sensor nodes are *autonomous* and there is no central control for the system.
 - Each node has influence on the nodes in its surroundings through *local interactions* among the nodes which are coherent and coordinated.
 - *Lack of overall state* information in the sensor network. Each unit maintains its own state only
Challenges

- Hardware constraints
- Fault tolerance
- Security
- Controllability
- System testing and simulation
Hardware overview

<table>
<thead>
<tr>
<th></th>
<th>Btnode 3</th>
<th>mica2</th>
<th>mica2dot</th>
<th>micaz</th>
<th>telos A</th>
<th>tmote sky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Art of Technology</td>
<td>Crossbow</td>
<td>Crossbow</td>
<td>Crossbow</td>
<td>Imote iv</td>
<td>Imote iv</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>Atmel Atmega 128L</td>
<td>Atmel Atmega 128L</td>
<td>Atmel Atmega 128L</td>
<td>Atmel Atmega 128L</td>
<td>Texas Instruments MSP430</td>
<td>Texas Instruments MSP430</td>
</tr>
<tr>
<td>Clock</td>
<td>7.37 MHz</td>
<td>7.37 MHz</td>
<td>4 MHz</td>
<td>7.37 MHz</td>
<td>8 MHz</td>
<td>7.37 MHz</td>
</tr>
<tr>
<td>RAM (KB)</td>
<td>64 + 180</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>ROM (KB)</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>Storage (KB)</td>
<td>4</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>256</td>
<td>1024</td>
</tr>
<tr>
<td>Radio</td>
<td>Chipcon</td>
<td>Chipcon</td>
<td>Chipcon</td>
<td>Chipcon</td>
<td>Chipcon</td>
<td>Chipcon</td>
</tr>
<tr>
<td>MHz</td>
<td>CC1000 315/433/868/916</td>
<td>CC1000 315/433/868/916</td>
<td>CC1000 315/433/868/916</td>
<td>CC2420 2.4 GHz 250 Kbps</td>
<td>IEEE 802.15.4 IEEE 802.15.4</td>
<td></td>
</tr>
<tr>
<td>Kbauds</td>
<td>38.4</td>
<td>38.4</td>
<td>38.4</td>
<td>38.4</td>
<td>IEEE 802.15.4 IEEE 802.15.4</td>
<td></td>
</tr>
<tr>
<td>Max Range</td>
<td>150–300 m</td>
<td>150–300 m</td>
<td>150–300 m</td>
<td>75–100 m</td>
<td>75–100 m</td>
<td>75–100 m</td>
</tr>
<tr>
<td>Power</td>
<td>2 AA batteries</td>
<td>2 AA batteries</td>
<td>Coin cell</td>
<td>2 AA batteries</td>
<td>2 AA batteries</td>
<td>2 AA batteries</td>
</tr>
<tr>
<td>PC connector</td>
<td>PC-connected</td>
<td>PC-connected</td>
<td>PC-connected</td>
<td>PC-connected</td>
<td>USB</td>
<td>USB</td>
</tr>
<tr>
<td>OS</td>
<td>Nut/OS</td>
<td>TinyOS</td>
<td>TinyOS</td>
<td>TinyOS</td>
<td>TinyOS</td>
<td>TinyOS</td>
</tr>
<tr>
<td>Transducers</td>
<td>On acquisition board</td>
<td>On acquisition board</td>
<td>On acquisition board</td>
<td>On acquisition board</td>
<td>On board</td>
<td>On board</td>
</tr>
<tr>
<td>Extras</td>
<td>+ Bluetooth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges cont...

- **Hardware Constraints**
 - **Power or energy**
 - Energy efficient algorithms and protocols are required
 - **CPU and memory**
 - Algorithms are required which can process in available processing speed and memory
 - **Transmission range**
 - A moderate transmission range available
Challenges cont...

- **Power**
 - Affected by almost every activity
 - processing, communication, sensing …
 - Hardware optimizations
 - Low power consumption
- **Software**
 - energy efficient protocols and algorithms
Challenges cont...

- **Communication**
 - Most expensive in terms of energy consumption
 - Tx, Rx and Idle are much larger than Sleep
 - Large packets consume more energy

- **Performance**
 - Efficient implementation of algorithms for limited CPU and memory availability
 - Algorithms to use less memory accesses to save energy

Energy consumption for large (top) and small (bottom) packets in two routing protocols [EEGR]
Challenges cont...

- **Fault Tolerance and reliability**
 - Various sources of faults
 - Environmental changes, malicious activity, hardware failures, software bugs
 - Fault detection, identification, prevention, isolation, recovery
 - Requirements vary with applications
 - Failure of nodes may be critical
 - Some nodes may be the connection points for others
 - Various points of failure
 - Topology changes, communication, low energy, persistency,
Security and privacy
- Data confidentiality, integrity, authentication, message freshness
- Energy efficiency
 - Encryption and authentication causes overhead (14% and 3% in one study)
- Key distribution
 - Pre installed key
 - Session key establishment
- Potential attacks
 - Physical tampering, DoS, signal jamming, sinkhole, wormhole, sybil...
Challenges cont...

- **System testing and simulation**
 - Large scale testing incurs cost
 - **Several simulation tools**
 - NS2, OPNET, QualNet, Atarraya
 - **Limitations**
 - No physical layer simulation in NS2 and Atarraya
 - Limited sensor model libraries in QualNet and OPNET
 - No processing model in Atarraya
Examples

- **Data aggregation**
 - To reduce number of messages, messages size, energy efficiency

- **CDS based topology**
 - For energy efficiency by keeping nodes in sleep mode

- **Topology maintenance**
 - Uniform energy distribution among the nodes

- **Load balancing**
 - Network lifetime extension through load balancing and energy distribution among the nodes
Conclusion

- Self organization is desired in Wireless sensor networks
- Various challenges in application development in wireless sensor networks
Questions