
MTAT.03.183 Data Mining
Machine Learning, Part III. Home Assignment.

Konstantin Tretyakov

Due: November 26, 2009

1. Support vector machines. Consider the training set {(0, 0), 1), ((1, 0), 1),
((2, 3),−1), ((3, 2),−1)}, consisting of two-dimensional points, each one having
a class label 1 or −1. Depict the points on a plane and indicate a separating
hyperplane with the maximal margin. The points with the smallest margin are
called support vectors. Which points are the support vectors?

2. Notion of a kernel. Suppose that we are classifying two-dimensional
points using a linear classifier. That is, for each point (x1, x2) our classification
rule looks as follows

f(x) = sign(w · x + b) = sign(w1x1 + w2x2 + b) ,

where (w1, w2, b) are the parameters, which we somehow learn from the data.
Let us now transform our points x to a higher-dimensional space using a

feature map φ of the following kind:

φ(x) = (
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2).

Note that if we apply the linear classifier to the transformed points, we won’t
be dealing with a linear function of x any more, but with a polynomial:

f(φ(x)) = sign(w·φ(x)+b) = sign(
√

2w1x1+
√

2w2x2+
√

2w3x1x2+w4x
2
1+w5x

2
2+b) .

Finally, note that our learning algorithm can be implemented so that it
would only need the inner products φ(x) · φ(y). It turns out that it is possible
to compute these inner products in a “shortcut”, without explicitly computing
φ(x).

Your task here is to understand the meaning of the text above and also show
that in our example

φ(x) · φ(y) = (x · y + 1)2 − 1

1

3. Kernelized perceptron. The perceptron algorithm is a linear classifier,
which, for a given dataset {(xi, yi)}, x ∈ Rm, yi ∈ {−1, 1} finds a separating
hyperplane (w, b) in the following way:

• Start with (w, b) = (0, 0)

• Find an item (xj , yj) for which sign(w · xj + b) 6= yj and update the
parameters:

w := w + yjxj b := b+ yj

Repeat.

• If no such item exists, return (w, b).

We shall now transform this algorithm to a kernelized form, that is, make
sure that the algorithm only uses the training set via the inner product (i.e.
kernel) function. For that we only need to represent w as:

w =
∑
i

αixi

and work with the values αi instead of w. The algorithm will then look as
follows:

• Start with (α, b) = (0, 0)

• Find an item (xj , yj) for which sign(
∑

i αixi ·xj + b) 6= yj and update the
parameters:

α := ??? b := b+ yj

Repeat.

• If no such item exists, return (α, b).

Questions:

• What is the update step for α? Can you interpret the final value of αi?

• Can you now plug in arbitrary kernels into this algorithm? How?

4. Learning with kernels. Open the file languages.arff in Weka. This
is a small dataset of Estonian and English phrases, each phrase labeled with
the corresponding language. Try building an SVM classifier for the languages
in two different ways.

• Firstly, attempt converting strings to word vectors using the StringToWord-
Vector filter and apply the SVM classifier (weka.classifiers.functions.SMO)
with the linear kernel.

• Secondly, instead of converting strings to word vectors use a string kernel
within the SVM. Train a language classifier using string kernel and com-
pare its performance to the previous case. Can you explain the observed
difference in performance? Hint: the string kernel computes similarity of
pairs of strings by considering their subsequences.

2

5. Case of the Sauron (cont-d). In the last home assignment you had to
analyze the situation with Sauron and his two students. The true answer was
unintuitive for many. In this exercise you will simulate the Sauron’s case and
see how it goes for yourself.

Let us suppose that the second student got really lucky and guessed a proper
representation for the spells. That is, indeed, each of Sauron’s spell can be
represented as a set of letters. When a spell is chosen from the Great Book at
random, each letter will appear independently with probability 0.3:

make_one_random_spell = function() {

rbinom(26,1,0.3)

}

Let us also suppose that the true classification of the spells can be achieved
using a linear classifier:

true_spell_class = function(spell) {

w = c(1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,

-16,17,-18,19,-20,21,-22,23,-24,25,-26)

sign(spell %*% w - 27.5)

}

Finally, let us assume that the second student got even more lucky because
for training he attempted to fit exactly the linear model to the data, using
the SVM algorithm. For simplicity let us suppose that instead of doing the
irrelevant training/testing set split, the student just used all 20 instances to
train the model.

In this case, the situation that happened with Sauron and the students can
be simulated as follows:

Sauron generates a dataset:

spells = make_n_random_spells(20)

c = true_spell_class(spells)

First student finds the majority class

majority_class = sign(sum(c) + 0.5)

Second student trains an SVM:

svm_model = svm(spells, c, type=’C’, kernel=’linear’)

Sauron generates a new example:

test_example = make_one_random_spell()

.. and tests each student’s predictions:

student1_correct =

(majority_class == true_spell_class(test_example))

student2_correct =

(predict(svm_model, t(test_example)) == true_spell_class(test_example))

3

Simulate the situation 1000 times or more, and observe:

• How often would the first student guess correctly (i.e. what is his method’s
expected generalization error)?

• How often would the second student guess correctly?

• In those cases when the predictions differ, how often is the first student
right?

• Could you somehow improve the second student’s performance by, say,
doing training in a smarter way? Tuning method parameters? Changing
the number of attributes used in training?

• Finally, see what happens when the dataset becomes larger (i.e. increase
n to 30, 40, . . . , 100, 200, . . .). How many training points are required
so that the second student’s expected generalization error would go down
to 10%? To 5%? What happens with the first student’s expected gener-
alization error?

NB: A sample script is available for your convenience at the assignment
webpage. Note that in order to train SVM classifiers you will need to install the
e1071 R package. The command that installs it, is given in the first line of that
script (yet commented out).

6*. Machine learning for music. I’ve downloaded the chord sequences of
some popular songs by The Beatles, Paul McCartney, Eric Clapton, Red Hot
Chili Peppers, Metallica and Nirvana from the website http://www.e-chords.

com for you, and invite you to analyze this dataset using whatever machine
learning or data mining methods you find applicable. As a minimum, you could
check whether it is possible to discriminate the artists on the basis of the chord
sequences (which should be a good application for the string kernel, by the way).
However, you need not limit yourself to classification only. Other options, such
as clustering, automated chord sequence generation, frequent pattern detection,
association rule mining or visualization might be rather exciting. Report your
findings.

4

