SOFT TYPING

Robert Cartwright and Mike Fagan
Department of Computer Science
Rice University
Houston, TX 77251-1892

Summary

Type systems are designed to prevent the improper use of program operations.
They can be classified as either static or dynamic. Static type systems detect
“lll-typed” programs at compile-time and prevent their execution. Dynamic
type systems detect “ill-typed” programs at run-time.

Static type systems have two important advantages over dynamic type systems.
First, they provide important feedback to the programmer by detecting a large
class of program errors before execution. Second, they extract information that
a compiler can exploit to produce more efficient code. The price paid for these
advantages, however, is a loss of expressiveness, modularity, and semantic sim-
plicity.

This paper presents a soft type systems that retains the expressiveness of dy-
namic typing, but offers the early error detection and improved optimization
capabilities of static typing. The key idea underlying soft typing is that a type
checker need not reject programs containing “ill-typed” phrases. Instead, the
type checker can insert explicit run-time checks, transforming “ill-typed” pro-
grams into type-correct ones.

1 Introduction

Computations in high-level programming languages are expressed in terms of operations on
abstract values such as integers, matrices, sequences, trees, and functions. Most of these
operations are partial: they are defined only for inputs of a certain form. For example, the
head operation (car in Lisp) is defined only for non-empty sequences.

Since programmers can write programs with undefined applications, a programming
language must assign some form of meaning to undefined applications. To address this
problem, most programming languages adopt a type discipline. This discipline can either be
static or dynamic. A statically typed language prevents undefined applications by imposing
syntactic restrictions on programs that guarantee the definedness of every application. The
implementation refuses to execute programs that do not meet these restrictions. ML[17] is
a prominent example of a contemporary statically typed language.

In contrast, a dynamically typed language accepts all programs. Undefined applications
are detected during program execution by tests embedded in the code implementing each
primitive program operation. If an operation’s arguments are not acceptable, the operation
generates a program exception, transferring control to an exception handler in the pro-
gram or the operating system. Scheme[5] is a prominent example of a dynamically typed
programming language.

Static typing has two important advantages over dynamic typing:

Error Detection: The system flags all “suspect” program phrases before execution.

Optimization: The compiler produce better code by independently optimizing the rep-
resentation of each type and eliminating most run-time checks

However, these advantages are achieved at the cost of a loss of expressiveness, modularity,
and semantic simplicity:

Expressiveness: no type checker can always decide whether or not a program will gen-
erate any undefined applications. Therefore, the type checker must err on the side
of safety and reject some programs that do not contain any semantic errors. As a
result, they reject many programs that lie beyond the limited deductive power of the
type-checking system.

Modularity: some procedures in program libraries and some procedures exported from
modules will be assigned more restrictive types than their meaning requires, restricting
the contexts in which they can be used.

Semantic Simplicity: the type system (a complex set of syntactic rules) is an essential
part of the language definition that a programmer must understand to write programs.
Otherwise, he will repeatedly trip over the syntactic restrictions imposed by the type
system.

In this paper, we present a generalization of static and dynamic typing—called soft
typing—that combines the best features of both approaches. A soft type system can stat-
ically type check all programs written in a dynamically typed language because the type
checker is permitted to insert explicit run-time checks around the arguments of “suspect”
applications. In other words, the type checker transforms source programs to type correct
programs by judiciously inserting run-time checks.

Soft typing retains the advantages of static typing because the final result is a type
correct program in a sublanguage that conforms to a static type discipline. In the context
of soft typing, a programmer can detect errors before program execution by inspecting each
run-time check inserted by the type checker. Compilers can generate efficient code for softly
typed languages because the transformed program is type correct.

The key technical obstacle to constructing a practical soft type system is devising a type
system that is

e rich enough to type most program components written in a dynamic typing style
without inserting any run-time checks, yet

e simple enough to accommodate automatic type assignment (often called type inference
or type reconstruction).

Existing static type systems fail to satisfy the first test, namely, the typing of most program
components written in a dynamic style without inserting run-time checks.

In this paper, we show how to construct a practical soft type system that subsumes
the ML type system. Our work adapts an encoding technique developed by Rémy. This
technique enables our soft type system to rely on essentially the same type assignment
algorithm as ML. The only difference is that our algorithm uses circular unification instead
of ordinary unification. Rémy’s encoding also enables us to use the ML type assignment
algorithm on a transformed problem to determine what run-time checks to insert.

The rest of the paper is organized as follows. Section 2 presents the technical prelimi-
naries. Section 3 identifies the appropriate design criteria for a soft type system, focusing
on the necessary elements in the type language. Section 4 describes a type language that
meet these criteria. Section 5 presents an inference system for deducing types for program
expressions and Section 6 gives an algorithm that automatically assigns types to program
expressions. Section 7 describes a method for inserting run-time checks when the type
assignment algorithm fails. Finally, Section 8 discusses related work, and Section 9 sum-
marizes our principal results.

2 Exp: a Simple Programming Language

We are interested in developing a soft type system suitable for higher order imperative
languages like Scheme and Standard ML. For the sake of simplicity, we will confine our
attention in this paper to the simple functional language Exp introduced by Milner[16] as
the functional core of ML. The automatic type assignment and coercion insertion methods
that we present for Exp can be extended to assignment and advanced control structures
using the same techniques that Tofte[21], MacQueen[4], and Duba et al[9] have developed
for ML.
The syntax of Exp is given by the following grammar:

Definition 1 (The programming language) Let x range over a set of variables
and ¢ range over a set of constants K

Lu=zl|ec|Xe.L|(LL)|letz=Lin L

The set K of constants contains constructors that build values, selectors that tear
apart values, and case functions that conditionally combine operations. For example, the
boolean constants true and false are 0-ary constructors, the list operation cons is a binary
constructor, and the head and tail functions are selectors on non-empty lists (constructed
using the cons operation. For each non-repeating sequence of constructors, there is a case
function. If {cq1,...,¢c,) is a sequence of constructor names, then caser. .., takesn +1
arguments: a value v, and n functions o1,...,0,. The case(, . ., is informally defined by
the following equation:

01(v) v is a ¢; construction
case(ey,...cn)(V)(01) - (0n) = 0n(v) v is a ¢, construction
fatal-error otherwise

The standard ternary if operation is synonymous with the function casey e false-

Exp is a conventional call-by-value functional language. With the exception of the prim-
itive case functions, all functions diverge if their arguments diverge. The formal semantic
definition for Exp is given in an Appendix in the full paper. The only unusual feature
of the semantics is the inclusion of a special element fatal-error in the data domain to
model failed applications which can never be executed in type correct programs. The data
domain also includes exception values to model the output of dynamic run-time checks.

3 Criteria for a Soft Type System

From the perspective of a programmer, a softly typed language is a dynamically typed
language that provides feedback on possible type errors. From the perspective of a compiler-
writer, it is statically typed language because only type correct programs are compiled and
executed.

For a soft type system to be effective and practical, it must satisfy the following two
criteria:

Minimal-Text-Principle The system should not require the programmer to declare the
types of any program phrases or operations.

Minimal-Failure-Principle The system should leave “most” program components un-
changed unless they can produce type errors during execution.

To satisfy the minimal-failure condition, a soft type system must accommodate paramet-
ric polymorphism, an important form of modularity found in dynamically typed languages.
Parametric polymorphism is best explained by giving an example. Consider the well-known
Lisp function reverse that takes a list as input and reverses it. For any type a, reverse
maps the type list(a) to list(a). To propagate precise type information about a specific
application of reverse, we need to capture the fact that the elements of the output list
belong to the same type as the elements of the input elements. Otherwise, we will not be
able to type check subsequent operations on the output elements. For this reason, a soft
typing system must be able to express the fact that reverse has type Va.list(a) — list(a)
as in ML.

A type system based only on parametric polymorphism, however, still does not satisfy
minimal-failure criterion. There are two important classes of program expressions that
commonly occur in dynamically typed programs that do not type-check in languages that
support only parametric polymorphism.

3.1 Non-uniformity

The first class of troublesome program expressions is the set of expressions that do not
return “uniform” results. Consider the following sample function definition.

Example 1 (Non-uniform if) Let f be the function
Az.if z then 1 else nil

where if-then-else has type Ya bool = a — a — a.

[takes a simple boolean value and returns either 1 or nil. Clearly, no run-time error occurs
if is a boolean. Nevertheless, this function fails to type check, because 1 and nil belong
to different types.

To assign types to non-uniform expressions, we need to introduce union types. The
union type a U 3 is the union of the sets a and . It is a fundamentally different type
construction than the disjoint union type construction found in many languages (including
ML). The disjoint union of a and forms a new set disjoint from a and 3; the elements of
new set are created by “tagging” the elements of a and S.

In a type system with union types, the function in Example 1 has type bool — int U nil.
Union types also enable us to make finer grained type distinctions. As an illustration of this
effect, consider the type list. It is the union of two different constructor types: the empty
list nil and the constructed lists of the form (cons a L). The division of the type list(a)
into the union of the types nil and cons(a) is important because the selectors head and
tail functions produce run-time errors when applied to the empty list! Languages without
union types typically define the type of head as list(ar) — a. In this case, (head nil) will
pass the type checker, even though it will generate a run-time error when it is executed.

3.2 Recursivity

The other troublesome class of program expressions is the set of expressions that induce
recursive type constraints. A classic example of this phenomenon is the self application
function

S =xe.(z x)

Since z is applied as a function in the body of 5, z must have type a — 3. But the
self-application also forces @ — [to be subtype of the input type of z which is a. In a
dynamically typed language like Scheme, the function S can be written and executed. If
S is applied to the identity function or a constant function, it will produce a well-formed
answer. Nearly all static type systems, however, reject 5.

The simplest way to construct solutions to recursive type constraints is to include a fixed-
point operator £ix in the language of type terms. This feature is usually called recursive
typing. Given the operator fix, we can assign the type fix t.t — § to 5.

The true power of recursive typing, however, lies in its use with union types. The follow-
ing simple example (taken from an introductory Scheme course[10]) is a good illustration
of this phenomenon.

Example 2 Let the function deep be defined by the equation
deep = An.(if (=7 n zero) zero (cons (deep (pred n)) nil))

where zero is the 0-ary constructor denoting 0 and pred : suc — zero U suc is
the standard predecessor function.

This function takes a non-negative integer n as input, and returns 0 nested inside n levels
of parentheses. It does not type check in ML because the output type cannot be described
by a simply parametric pattern or cyclic pattern. In a type system with parametric types,
union types, and recursive types, deep has type (zero U suc) — £ix t.zero U cons(?)

4 A Type Language Suitable for Soft Typing

Our type language is parameterized by the set of data constructors in the programming
language. We assume that the data constructors are disjoint: no value v can be generated
by two different constructors. For each data constructor c, we define a type constructor
with the same name c. The type language also includes the special type constructor —
for defining function types. The arity of each type constructor depends on the degree
of polymorphism inherent in the corresponding data constructor. For example, the data
constructor cons for building lists accepts arbitrary values as its first argument, but the
second argument must be a list, so the cons type constructor has arity 1. Similarly, the
data constructor suc takes one argument, but it must be a non-negative integer, so the type
constructor suc arity 0. The special type constructor — has arity 2.

Given a set of type constructors C', we define the set of constructor type terms X(C,V)
over a set of variables V to be the free term algebra over C,V. We define the raw type
terms over C' and V as the set that is inductively defined by the equation

T=V]el..)|T+T|fixv.T.

where v is any type variable in V', ¢ is any type constructor in C', and ... is a list of n raw
type terms where n is the arity of c.

The intended meaning of raw type terms is the obvious one. Every closed type term
denotes a set of data objects. For each data constructor ¢ € C', the corresponding type
construction ¢(aq, ..., a,,) denotes the set of all data objects of the form ¢(z1,...,z,) where
(i) each polymorphic argument z; in the list 21, ..., z, is taken from the type denoted by the
matching® argument «; and (ii) each non-polymorphic argument z; is taken from the type
specified in the definition of the data constructor ¢. The function type construction a —
denotes the set of all continuous functions that map « into 3. The + operator denotes
the union operation on sets and the fix operator denotes the least fixed-point operation

!Type argument «; corresponds to the ith polymorphic argument of the data constructor c¢. Hence, j
may be greater than z.

on type functions. A formal definition of the semantics of type terms based on the ideal
model[15, 14] of MacQueen, Plotkin, and Sethi is given in the full paper.

For technical reasons, we must impose some modest restrictions on the usage of the fix
and + operators in type terms. The set of tidy type terms over C' and V is the set of raw
type terms over C' and V that satisfy the following two constraints:

1. Every subterm of the form fix v.t is formally contractive. Almost all uses of fix that
arise in practice are formally contractive, but the formal definition is tedious. It is
given in the full paper. The expressions fix a.a and fix a.a + nil are not formally
contractive, but £ix a.a — § and fix a.nil + cons(a) are.

2. Every subterm of the form u + v is discriminative. A raw type term of the form v + v
is discriminative iff (7) neither w or v is a type variable, and (i) each type constructor
appears at most once at the top level (not nested inside another type construction) of
u+v. The terms {4 true and cons(z)+ cons(y) are not discriminative. but false 4 true
and nil + cons(y) are.

Let C' be the set of type constructors for Exp. Given a set of type variables V', the soft
type language for Exp is the set of tidy type terms over C' and V.

Our soft type system is specifically designed to facilitate reasoning about subtypes of
unions, an essential characteristic of soft type systems that we identified in Section 3. To
reason about subtypes, we use the following inference system patterned after a system

developed by Amadio and Cardelli[3]

Definition 2 (Inference Rules for Subtyping)

REFL: FTCT
UNI: FThCT+ T,
Fix1: Ffix .7 =Tz «— fix 2.T]
C C
TRANS: FTy CTy FTy, CTs
Ty C 13
FSiCTy...FS, CT,
Con: S Eh Sn & ¢ an n-ary constructor, ¢ #—

H C(Sl,...,sn) g C(Tl,...,Tn)
F15CT, F1y CTy
FT1 — 15 CT3 — T4
tl Q t2 F Tl[.’E — tl] g TQ[.’E — tg]
Ffix .77 C fix z.75

Fun:

Fix2:

The inference rules assume that + operator is associative, commutative, and
idempotent.

The final step in defining our type language is adding the notion of universal quantifi-
cation. As in MLI[8, 7], we restrict universal quantification to the “outside” of type terms.
In this restricted setting, type terms containing quantifiers are called type schemes. A type
scheme is defined by the grammar:

o= r1|Vt.o

where 7 denotes the set of tidy terms. The types of polymorphic operations are given by
type schemes rather than type terms.

The semantics for tidy type terms is easily extended to accommodate type schemes.
The technical details appear in the full paper.

5 Type Inference

To assign types to programming language expressions, we use a type inference system similar
to the type inference system for ML. The inference system uses both the subtype relation
C defined by the subtype inference system given in Section 4 and the generic instance
relation < defined by Damas and Milner[7] for the ML type system. A generic instance of
type scheme 7 is a type scheme 7/ obtained by substituting tidy type terms for quantified
variables of 7. For example, given the type Va.cons(a) — «, then cons(int) — int is a
generic instance.

The inference rules below are the original Milner rules augmented by the single rule SUB

Definition 3 (The soft type system rules) Let e be a program expression and
let ¢ be a type scheme. The formula e : ¢ is called a typing judgment. The
intended meaning is that e has type .

Let A be a set of type assumptions of the form id : o.

TAuT: AtFz:o Alz) =0
INsT: Afeio o' <o
' AFz:o -

GEN: % a not free in A
Au{ez:1'} ke T
A :
Bt AbFdze 7 — 1)
AR fimm—m AFe:m
App:
P AF(fe):m
Ler: Ale o AU{x:'U}I—EQ:T
AbFletx =e; iney: 7T
Alte:T
: - c 7
SuB Ate:r! r=T

The effect of adding the SUB rule is surprisingly subtle. The most important consequence
is that program expressions do not necessarily have best (principal) types. The following
counterexample demonstrates this fact.

Example 3 (A non uniform deduction) Let fi : (a — @) — a — o and
f2 1a+ b — a be program functions. We can immediately deduce that (f; f2):
a — a. Alternatively, AF (fi f2):a+b— a+b. These two typings for (f1 f2)
are incomparable, so neither is best. Furthermore, no other type that has both
types as supertypes can be derived, so there exists no best type.

Nevertheless, our type system retains the most important property of the ML type
inference system, namely the soundness property and its corollaries. The soundness property
simply asserts that every provable typing judgment is true, according to semantics that we
have defined for the programming language, the type language, and type assertion language.
This result is formally stated in the full paper. On an informal level, the soundness theorem
ensures that well-typed programs never execute undefined function applications.

6 Automated Type Assignment

To satisfy the minimal-text criterion for soft typing, we must produce a practical algorithm
for assigning types to program expressions. We have developed an algorithm based on the
type assignment algorithm from ML (Milner’s algorithm W). Our algorithm differs from
the ML algorithm in two respects.

o First, we encode all program types as instances of a single polymorphic type that has
type parameters for every type constructor and for every parameter to a type construc-
tor. This encoding was developed by Rémy[19] to reduce inheritance polymorphism
to parametric polymorphism.

e Second, we use circular unification (as in CAML[22]) instead of regular unification
to solve systems of type equations. Circular unification is required to infer recursive

types.

The Rémy encoding is based on the observation that set of data constructors C'is finite.
Consequently, we can enumerate (up to substitution instances) all the tidy subtypes and
supertypes of a given type expression. Consider the following example. Assume that the
only constructors in our type language are a(z), b, c. Then the supertypes of the type b are
{b,(a(z)+b,b+c,a(x)+b+c}. We can describe this set using a simple pattern by analyzing
which type constructors must appear in a supertype, which type constructors may appear
in a supertype, and which type constructors must not appear in a supertype.

The following table presents the results of this analysis:

Status @ | Status b | Status ¢
may must may

The same form of analysis can be used to construct a pattern describing all the possible
subtypes of a given type. Since b has no subtypes other than itself, let’s consider the type
b+ ¢ instead. The subtypes of b+ ¢ are {b,c,b+ ¢} . A “must/may/must-not” analysis of
this set yields the table

Status a | Status b | Status ¢
must-not may may

Note that in supertype patterns, positive (“must”) information plays a crucial role, while
in subtype patterns, negative (“must-not”) information is crucial. We need both forms of
patterns because the function type constructor — inverts the form of information provided
by its first argument.

Rémy expresses these patterns in the framework of parametric polymorphism by using
a single highly polymorphic type constructor R and two type constants + and — signifying
“must” and “must-not” respectively. R has a type parameter for each type constructor
(which must be instantiated by either + or —) and a type parameter for each type argument
taken by a constructor (which must be instantiated by an instance of R). Using this
notation, we can rewrite the preceding patterns as follows. The supertypes b are given by
the Rémy type expression R(7y,z,+,72). The subtypes of b+ ¢ are given by R(—, z, 73, 74)

The key property of this encoding is that it eliminates the union operator + and reduces
the subtyping relation to the instantiation of the polymorphic type constructor R. As a
result, the ML type assignment algorithm can be used to solve type equations. If we extend
Rémy’s notation to include the fix operator, then we can express all tidy types using
Rémy’s notation. More precisely, we can map any tidy type term 7 to a Rémy type term
R, () denoting all of the supertypes of 7. Similarly, we map any tidy type term 7 to
a Rémy type term R_(7) denoting all of the subtypes of 7. The encoding is non-trivial
because we must treat the function type constructor — as a special case to cope with the
fact — is anti-monotonic in its first argument.

Before we define the mapping from tidy type terms to Rémy notation, we need to
introduce some subsidiary definitions. Let || denote the syntactic concatenation operator
defined by the equation:

<(L1,...,(Lk>||<b1,...,bl> = <(L1,...,(Lk,b1,...,b[>

A tidy type term 7 of the form ¢(t1,...,%,),1) is a component of a tidy type term u 4 v
(written 7 C u + v) iff 7 is identical to either u or v, or 7 is a component of either u or v.
If no term of the form ¢(¢1,...,%,),t) is a component of a term w, we say that ¢ does not
occur in w (written ¢ w).

We define the mappings Ry and R_ | from tidy type terms to Rémy type terms as
follows:

t teV
(+,R+(t1)y .. s Re(t)) ity ... tm) Ct
_ ¢ F—
BeiD = N (4 R (), Ry(tn)) 11— 12 C 1
(Kj,zh,...,2h,) ¢ Lt
fix m.Ry (1) t=fix m.t/
t teV
(Kj, R_(t1)y..., R_(tm)) ¢i(th,...,tm) Ct
¢ £—
R_;(1) =
W2 s B) e
<_ 'rlv ,.I > Ci Z t
fix m. R_J(t) t=fix m.t'

Ri(t) = R(Bpa(D]|B12(1) .- || By (D))
R_(t) = R(R-1(D][R-2(1)...[[R-(1))

where each occurrence of x; denotes a fresh type variable, distinct from all other type
variables.

The inverse transformations are similar and will not be shown here. However, we note
that some R-terms correspond to a set of tidy terms, rather than a single term.
Our type assignment algorithm consists of three steps:

1. Encode the types of primitive operations in Rémy notation.
2. Perform ordinary type assignment via algorithm W (using circular unification).
3. Translate the Rémy type expressions back into tidy terms.

In the full paper, we will prove that our type assignment algorithm is sound.

6.1 Some examples

Consider the function mixed = A z.if z then 1 else nil defined in Example 1. Our
algorithm assigns the type true 4 false — suc + nil to mixed.

A more interesting example is the function taut which determines whether an arbitrary
Boolean function (of any arity!) is a tautology (true for all inputs).

Example 4 (Tautology example)

taut = AB.case B of
true : true
false: false
fn: ((and (taut (B true))) (taut (B false)))

For the taut function, our algorithm produces the typing taut : § — (true+false) where

B = fix t.(true + false + ((true + false) — ¢)).

7 Inserting run-time checks

As we explained in the introduction, no sound type checker can pass all “good” programs.
Our type checker described in section 6 succeeds in inferring types for most programs.
Nevertheless, some “good” programs will not pass that type checker. For example:

Example 5 (Function with no type)
Ny = A f. if f(true) then f(5)+ f(7) else f(7)

The type checker fails because it infers incompatible constraints for the type of the argument
f. The if test forces f: true — true + false. Similarly, the true arm of the if requires
f : suc — z + suc. There is no unifier for these two typings of f, preventing the type
checker from assigning a type to Ny. The function N; is not badly defined, however,
because Ni(A z.z) never goes wrong.

Sometimes our type checker fails to account for all the possible uses of a function.
Consider the following modification of the previous example.

10

Example 6 (An anomaly)

Ny = A f. if f(true) then f(5) else f(7)

In this case, our type assignment algorithm yields the typing N3 : (true 4+ suc — true + false) —
true + false. But the application Ny(A z.z) is also well defined, but does not type check.

In both examples, the program is meaningful, but the type analysis is not sufficiently
powerful to assign an appropriate type. A static type system rejects these programs, in
spite of their semantic content. A soft type system, however, cannot reject programs. It
must insert explicit run-time checks instead.

The support the automatic insertion of explicit run-time checks, we force the program-
ming language to include a collection of ezceptional values in the data domain and a collec-
tion of functional constants to the programming language called narrowers. The narrowers
perform run-time checks and exceptional values propagate the information that a run-time
check failed. To define these notions more precisely, we need to introduce the concepts of
primitive and simple types. Each type constructor determines a primitive type: it con-
sists of all values that belong to some instance of the type. We denote the primitive type
corresponding to a constructor ¢ by the name of the constructor ¢. Since the type con-
structors are disjoint, every value (other than errors) belongs to ezactly one primitive type.
For values that are not functions, the primitive type of the value is simply the outermost
constructor in the representation of the value. For a function, the primitive type is simply
—. A simple type is simply a union of primitive types. Using notation analogous to type
terms, we denote the simple type consisting of the union of primitive types {1,...,%,; by the
expression t1 + ...+ 1,.

There is one exceptional value for each simple type S; it is denoted errorg. Similarly,
there is a narrower lJS« for every pair of simple types such that S C T. It is defined by the
equation

v vel
13 (v) =< errory vesS-T
fatal-error otherwise
The type associated with the narrower l% iss;+...— 1 +... where § = {sq,...} and
T=A{ty,...}.

The type insertion algorithm consists of the following sequence of steps:

2

1. Encode all type assumptions about primitive operations using Ry and convert all “—
flags to fresh type variables—eliminating all negative information.

2. Apply algorithm W (with circular unification!) on this transformed program to con-
struct a “positive” type for every program expression.

3. For each occurrence of a primitive, unify the “positive” type with original type (using
Rémy encodings). If unification fails, insert the narrower required for unification.

In the full paper, we prove that the narrower insertion algorithm preserves the meaning
of programs and that it always succeeds in constructing a type correct program. Both
proofs are straightforward.

11

7.1 Examples

To illustrate the insertion process, we analyze how it handles the two troublesome examples

that we presented at the beginning of this section. In both of these examples, let ¢y and c,
z4suc+truetfalse z4suc+truetfalse
denote the narrowers |77¢,¢ and ltrue-}—false

The insertion algorithm changes the function N; in example 5 to

N{ = X f. if c1(f(true)) then c1(f(5)) + c1(f(7)) else f(7)

, respectively.

The type for N{ is now (z + suc + true + false — z + suc + true + false) — z 4 suc and the
application N{(A z.z) is now type correct.

Similarly, in example 6, assume that a program contains definition of Ny and the ap-
plication (N3 (Az.z)). Then our insertion algorithm will modify the definition of Ny to
produce

N5 =X f. if c1(f(true)) then f(5) else f(7)
Now, the type system infers the type for N} as:

(z + suc + true + false — z + suc + true + false) — z + suc + true + false

and Ni(X z.z) now type checks.

8 Related Work

The earliest work on combining static and dynamic was an investigation of the type “dy-
namic” conducted by Abadi et al[l]. They added dynamic data values to a conventionally
statically typed data domain and provided facilities for converting data values to dynamic
values by performing explicit “tagging” operations. This system permits programs written
in statically typed languages to manipulate dynamic forms of data. It does not meet the
criteria for soft typing because the programmer must annotate his program with explicit
tagging operations to create “dynamic” values. In addition, programs are still rejected;
narrowers are not inserted by the type checker.

More recently, Thatte[20] has developed the notion of “quasi-static typing” that aug-
ments a static type system with a general type 2. Thatte’s system resembles soft typing
in that it insert narrowers when necessary, ensuring that all programs can be executed.
However, it does not meet the other criteria required for soft typing. It requires explicit
declarations of the argument types for functions, yet cannot type check many dynami-
cally typed programs (without inserting narrowers) because it does not support parametric
polymorphism, recursive types, or more than one level of subtyping.

Researchers in the area of optimizing compilers have developed static type systems for
dynamically typed languages to extract information for the purposes of code optimization.
Two of the most prominent examples are the systems developed by Aiken and Murphy|2]
and Cohagan and Gateley[6]. These systems, however, were not designed to be used or
understood by programmers. Consequently, they lack the uniformity and generality required
for soft typing.

Finally, many researchers in the area of static type systems have developed extensions
to the ML type system that can type a larger fraction of “good” programs. In the arena,

12

the

work of Mitchell[18], Fuh-Mishra[l1, 12, 13], and, of course Rémy[19] is particularly

noteworthy and has exerted a strong influence on our work.

9

Conclusions

The principal contribution of this research is the introduction of a new paradigm for program
typing called soft typing that combines the best features of static and dynamic typing. The
principal technical contributions include

o A type system specifically designed to assign types to a large fraction of programs
written in dynamically typed languages. The type system incorporates union types,
recursive types, and parametric polymorphism. The type system includes a sound
type inference system for deducing types for program expressions.

o A simple yet powerful algorithm for automatically assigning types to program expres-
sions, without the need for explicit type declarations.

o A simple algorithm for frugally inserting explicit run-time checks in programs for
which the type assignment algorithm fails. Consequently, any program may be safely
executed.

References

[1]

2]

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing
in a statically typed language. In Proceedings of the Sizteenth POPL Symposium, 1989.

Alexander Aiken and Brian Murphy. Static type inference in a dynamically typed
language. In Proceedings of the 18th Annual Symposium on Principles of Programming
Languages, 1991. To appear.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Conference
Record of the Fighteenth Annual ACM Symposium on Principles of Programming Lan-
guages, August 1990. (To Appear).

Andrew W. Appel and David MacQueen. Standard ML of new jersey reference manual.
(in preparation), 1990.

William Clinger and Jonathan Rees. Revised>®® Report on the Algorithmic Language
Scheme, August 1990.

William Cohagan and John Gateley. Interprocedural dataflow type inference. Submit-
ted to SIGPLAN 91, 1990.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Conference Record of the Ninth Annual ACM Symposium on Principles of Program-
ming Languages, 1982.

Luis Manuel Martins Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, 1985.

13

[9] Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class continuations
in ML. In Conference Record of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages, 1991. (To Appear).

[10] D. P. Friedman and M. Felleisen. The Little Lisper. Science Research Associates, third
edition, 1989.

[11] You-Chin Fuh. Design and Implementation of a Functional Language with Subtypes.
PhD thesis, State University of New York at Stony Brook, 1989.

[12] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In Conference
Record of the Furopean Symposium on Programming, 1988.

[13] You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the theory-
practice gap. In TAPSOFT, 1989.

[14] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic
types. In Conference Record of the Fleventh Annual ACM Symposium on Principles
of Programming Languages, 1983.

[15] D. B. MacQueen and Ravi Sethi. A semantic model of types for applicative languages.
In Conference Record of the Tenth Annual ACM Symposium on Principles of Program-
ming Languages, 1982.

[16] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 1978.

[17] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

[18] John C. Mitchell. Coercion and type inference. In Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, 1983.

[19] Dider Rémy. Typechecking records and variants in a natural extension of ml. In Con-
ference Record of the Sizteenth Annual ACM Symposium on Principles of Programming
Languages, 1989.

[20] Sattish Thatte. Quasi-static typing. In Proceedings of the Seventeenth POPL Sympo-
stum, 1990.

[21] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1987.

[22] Pierre Weis. The CAML Reference Manual. INRIA, 1987.

14

