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Backward look

Kernels may be useful when the feature vectors are
high-dimensional

Examples:

feature vector representation corresponding to a Gaussian
kernel
graphs represented as adjacency matrices
text over a large vocabulary

However, a kernel is only useful when it is more e¢ cient to
compute than the features themselves

Here we will discuss some examples of such kernels
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We have seen a few

RBF kernel, linear kernel, polynomial kernel:

kRBF (xi , xj ) = exp

 
�kxi � xjk

2

2σ2

!
klinear (xi , xj ) = x 0i � xj

kpolynomial,d (xi , xj ) =
�
x 0i � xj + 1

�d
=

d

∑
k=1

�
d
k

� �
x 0i � xj

�k
In order to understand what these mean, consider that the
resulting projection of a feature vector on the weight vector
can always be written as x0w = ∑n

i=1 αik (xi , x)
Hence, RBF ! sum of Gaussians // linear ! sum of inner
products // polynomial ! sum of powers up to d of inner
products
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Texts and strings

I consider a text an ordered list/sequence of distinct words
from a dictionary (usually large)

I consider a string an ordered list/sequence of symbols from
an alphabet (usually quite small)

In fact the di¤erence is arti�cial, but often it�s useful and
intuitive...
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The bag-of-words kernel

Consider a text (let�s say a natural language sentence)

What are the essential ingredients?

The words! (We ignore the grammar / word ordering for now)

Imagine a feature vector x with as ith entry the number of
occurrences of the ith word in the vocabulary

The bag-of-words representation...

T. De Bie, K. Tretyakov Pattern Analysis
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The bag-of-words kernel

Text (e.g. bag of words)

Sentence i is xi
E.g. xi ="This is a
sentence containing the
words: this, and, a, and
and"

Vocabulary: fa, and,
containing, is, sentence,
the, this, wordsg
(Usually, the vocabulary is
much larger than the
number of words used)

Vector representation:

xi =

0BBBBBBBBBB@

2
3
1
1
1
1
2
1

1CCCCCCCCCCA
(Usually an extremely
sparse vector...)
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The bag-of-words kernel

How to compute this kernel e¢ ciently?

I.e. the inner product between two such feature vectors xi and
xj without ever actually computing them
One approach:

Sort the words in each sentence alphabetically, remove
duplicates, and remember counts
Go through the lists of words left to right, take product, add
up...

In practice, this is much faster (because vocabulary size is
much larger than word use in texts)
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The bag-of-words kernel
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The k-mer kernel

A kernel for strings, not
containing distinct words

Count substrings, e.g. all
substrings up to length k = 3

AGTCGTC !�
1� ACT , 2� GTC ,
1� TCG , 1� CGT

�
Dimensionality of the feature
space: (alphabet size)k , here
43 = 64

Usually very sparse
(especially for large k)

0BBBBBBBBBBBBBBBBBBBBB@

AAA
...

ACT
...

CGT
...

GTC
...

TCG
...

TTT

1CCCCCCCCCCCCCCCCCCCCCA

!

0BBBBBBBBBBBBBBBBB@

0

1

1

2

1

0

1CCCCCCCCCCCCCCCCCA
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The k-mer kernel

Algorithm: based on Jaak�s algorithm to �nd the longest
frequent substring

Traverse the trie-structured substring space

Along the way, keep pointers to the occurrences of the
substring, in all strings between which the kernel needs to be
computed

Once reached the required depth (e.g. depth 3 for the 3-mer
kernel), multiply the numbers of occurrences in the di¤erent
strings

T. De Bie, K. Tretyakov Pattern Analysis
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The k-mer kernel

References:
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November 2002, 149 pages.
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The di¤usion kernel

Consider an undirected
graph, unweighted (for
simplicity here)

Graph Laplacian: � the
degree on the diagonal
elements, and 1�s if there
is an edge

L =

0BBBB@
�2 1 1 0 0
1 �1 0 0 0
1 0 �3 1 1
0 0 1 �2 1
0 0 1 1 �2

1CCCCA
T. De Bie, K. Tretyakov Pattern Analysis
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The di¤usion kernel

Let�s consider a lazy
random walk over the
graph

P (i ! i) = 1� di � ∆t
P (i ! j) = ∆t if (i , j) = edge

Then, the probability to
go from i to j after time
period t is the element at
(i , j) of

K = exp (tL)

T. De Bie, K. Tretyakov Pattern Analysis
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The di¤usion kernel

For t = 0.1 :

K =0BBBB@
0.98 0.01 0.01 0.00 0.00
0.01 0.99 0.00 0.00 0.00
0.01 0.00 0.97 0.01 0.01
0.00 0.00 0.01 0.98 0.01
0.00 0.00 0.01 0.01 0.98

1CCCCA
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The di¤usion kernel

For t = 0.1 :

K =0BBBB@
0.83 0.09 0.08 0.00 0.00
0.09 0.91 0.00 0.00 0.00
0.08 0.00 0.75 0.08 0.08
0.00 0.00 0.08 0.83 0.09
0.00 0.00 0.08 0.09 0.83

1CCCCA
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The di¤usion kernel

For t = 1 :

K =0BBBB@
0.32 0.30 0.18 0.10 0.10
0.30 0.52 0.10 0.04 0.04
0.18 0.10 0.24 0.24 0.24
0.10 0.04 0.24 0.34 0.29
0.10 0.04 0.24 0.29 0.34

1CCCCA
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The di¤usion kernel

Reference: R. I. Kondor and J. La¤erty (2002). Di¤usion
Kernels on Graphs and Other Discrete Input Spaces. ICML
2002.
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The marginalised kernel

Assume a probabilistic model for the data (a graphical model
/ bayesian network / markov random �eld)

For example: an HMM for strings:

hidden chain variables are h (k)
visible chain variables are x (k) (the string itself)

De�ne the kernel as:

k (xi , xj ) = ∑
hi ,hj

P (hi jxi )P (hj jxj ) k� ((xi , hi ) , (xj , hj ))

T. De Bie, K. Tretyakov Pattern Analysis
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The marginalised kernel

Intuition: check whether there are plausible explanations for
data xi and xj that are similar (according to k�)

Example: k� ((xi , hi ) , (xj , hj )) = δ (hi , hj )

Then:
k (xi , xj ) = ∑

h

P (hjxi )P (hjxj )

Intuition: are there hidden chains h that are likely both under
xi and xj?

Very generally applicable �also to more general probabilistic
models

Reference: Tsuda K, Kin T, Asai K. Marginalized kernels for
biological sequences. 1: Bioinformatics. 2002;18 Suppl
1:S268-75.
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Data fusion?

Remember, we had data objects x

We represented them using vectors x
But: there were often several ways to do this vector
representation (either explicitly, or implicitly by using a
speci�c choice of kernel)

So which choice to make?

T. De Bie, K. Tretyakov Pattern Analysis
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Data fusion?

Examples:

we have seen there are several ways of representing nodes in a
graph �also implicitly by using the di¤usion kernel
nonlinear kernels on vectorial data: many many choices...

More fundamentally:

Genes can represented by the DNA sequence, the AA
sequence, the 3-D structure of the protein, microarray
expression data, motif data,...
the content of a text can be represented by the bag-of-words
representation in a chosen language (there are many languages
�all contain the same information)

But, why make a choice here? Use all if possible!

T. De Bie, K. Tretyakov Pattern Analysis
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Data fusion?

Two major ideas:

1 Extract what di¤erent representations have in common

what do translations of the same text have in common?
not the grammar, not the vocabulary...
the semantics � the meaning!

2 Combine how di¤erent representations are complementary

Microarray data, gene sequence, motif data,... all may tell you
a di¤erent story about the gene

T. De Bie, K. Tretyakov Pattern Analysis
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Convex combinations of kernels

Let us compute a kernel for each data source: Kj
Then, we can compute a convex combination of those:

K = ∑ µjKj with ∑ µj = 1

This is again a valid kernel!

There are heuristic ways of doing this...

There are ways of doing this which minimise the
(Rademacher) complexity bound, and which are based on
convex optimisation theory

T. De Bie, K. Tretyakov Pattern Analysis



Lecture 6A: Kernels on structured data
Lecture 6B: Kernel methods for data fusion

Wrap-up

Why data fusion?
Combining complementary data sources
Canonical Correlation Analysis

Convex combinations of kernels
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Canonical correlation analysis

Given:

2 representations X and Z for the same objects xi :
X =

�
x1 x2 � � � xn

�0 , Z = � z1 z2 ... zn
�0

assume these data are centred (i.e., their means are in the
origin)

Find:

weight vectors wx and wz such that the projection of x on wx
strongly correlates with the projection of the corresponding z
on wz
intuitively: common �factors�or �features�underlying both
representations

T. De Bie, K. Tretyakov Pattern Analysis
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Canonical correlation analysis

Covariance between projections:
σxz = ∑n

i=1 x0iwx � z0iwz = w0xX0Zwz
Variance of projection of X:
σ2x = ∑n

i=1 x0iwx � x0iwx = w0xX
0Xwx

Variance of projection of Z:
σ2z = ∑n

i=1 z0iwz � z0iwz = w0zZ0Zwz
Correlation de�ned as: ρxz =

σxz
σxσz

The correlation on the training set can be written as

ρxz =
w0xX

0Zwzp
w0xX

0Xwx
p
w0zZ

0Zwz

T. De Bie, K. Tretyakov Pattern Analysis
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Canonical correlation analysis

Optimisation problem:

max
wx ,wy

w0xX
0Zwzp

w0xX
0Xwx

p
w0zZ

0Zwz

Seems hard... but note: invariant with respect to scalings of
wx and wy
Get rid of this by restating the problem as

max
wx ,wy

w0xX
0Zwz

s.t. w0xX
0Xwx +w0zZ

0Zwz = 2

T. De Bie, K. Tretyakov Pattern Analysis
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Canonical correlation analysis

Solve by means of method of Lagrange multipliers: introduce
Lagrange multiplier λ

2 (divided by 2 for convenience only)

max
wx ,wy

w0xX
0Zwz �

λ

2

�
w0xX

0Xwx +w0zZ
0Zwz � 2

�
Take gradient with respect to the weight vectors and equate
to 0:

X0Zwz � λX0Xwx = 0

Z0Xwx � λZ0Zwz = 0

T. De Bie, K. Tretyakov Pattern Analysis
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Canonical correlation analysis

(The result again:)

X0Zwz � λX0Xwx = 0

Z0Xwx � λZ0Zwz = 0

In matrix notation:�
0 X0Z
Z0X 0

��
wx
wz

�
= λ

�
X0X 0
0 Z0Z

��
wx
wz

�
An easily solvable generalised eigenvalue problem

T. De Bie, K. Tretyakov Pattern Analysis
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Canonical correlation analysis

By left multiplication of the �rst equation with wx and the
second with wz , we can see that

w0xX
0Zwz � λw0xX

0Xwx = 0

w0zZ
0Xwx � λw0zZ

0Zwz = 0

and hence w0xX
0Xwx = w0zZ

0Zwz (= 1 to satisfy the
constraint)
! normalise wx and wz such that
w0xX

0Xwx = w0zZ
0Zwz = 1 after solving the eigenvalue

problem
Furthermore:

λ =
w0xX

0Zwz
w0xX

0Xwx
=
w0xX

0Zwz
w0zZ

0Zwz
=

w0xX
0Zwzp

w0xX
0Xwx

p
w0zZ

0Zwz
the correlation along those directions

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

In high dimensional spaces, there is too much freedom to �nd
large correlation weight vectors on a given training set

Assume X and Z are full rank (i.e. dimensionality d � n),
then by choosing Zwz = Xwx , wx = X�1Zwz we can
always achieve a correlation λ = 1

This means that a correlation of 1 is in any case
non-signi�cant (also it would not be stable)

In other words: over�tting with bad generalisation as a
consequence

! reduce the norms of the weight vectors (constrain the
capacity...)

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

Regularised optimisation problem:

max
wx ,wy

w0xX
0Zwz

s.t. (1� γ)
�
w0xX

0Xwx +w0zZ
0Zwz

�
+

γ
�
w0xwx +w

0
zwz

�
= 2

This ensures that the norms of wx and wz are bounded (and
small)

I.e. we reduce the pattern space!

(In a somewhat di¤erent way as before...)

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

Solve by means of method of Lagrange multipliers: introduce
Lagrange multiplier λ

2 (divided by 2 for convenience only)

max
wx ,wy

w0xX
0Zwz �

λ

2
(w0x

�
(1� γ)X0X+ γI

�
wx

+w0z
�
(1� γ)Z0Z+ γI

�
wz � 2)

Optimality conditions:

X0Zwz � λ
�
(1� γ)X0X+ γI

�
wx = 0

Z0Xwx � λ
�
(1� γ)Z0Z+ γI

�
wz = 0

Now there holds that w0x
�
X0X+ γI

�
wx = w0z

�
Z0Z+ γI

�
wz

and λ = w0xX
0Zwzq

w0x ((1�γ)X0X+γI)wx
q
w0z((1�γ)Z0Z+γI)wz

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

In matrix notation:�
0 X0Z
Z0X 0

��
wx
wz

�
= λ

�
(1� γ)X0X+ γI 0

0 (1� γ)Z0Z+ γI

��
wx
wz

�
By increasing γ we reduce the size of the �pattern space�, and
the stability of the correlation found increases

On the other hand, we introduce a bias: we do not really
maximise the correlation anymore

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

Limit case 1: for γ = 0: unregularised CCA is retrieved

Limit case 2: for γ = 1:�
0 X0Z
Z0X 0

��
wx
wz

�
= λ

�
wx
wz

�
This amounts to maximising the covariance between the
projections on the respective weight vectors:

λ =
w0xX

0Zwzp
w0xwx

p
w0zwz

T. De Bie, K. Tretyakov Pattern Analysis
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Regularised CCA

Some notes concerning framework and statistics:

�Correlation�cannot be written as an averaging pattern
function

For this reason it seems harder to study using a Rademacher
type of analysis

What can be studied is the covariance w0xX
0Zwz (this is an

averaging pattern function)

Hence, often this is what is done, even when this is not of
direct interest in the optimisation problem

T. De Bie, K. Tretyakov Pattern Analysis
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Kernel CCA

Can we kernelise this?�
0 X0Z
Z0X 0

��
wx
wz

�
= λ

�
(1� γ)X0X+ γI 0

0 (1� γ)Z0Z+ γI

��
wx
wz

�
Let�s apply our general scheme...

First step: the representer theorem (shown for wx only):

wx = X0
�
1

λγ
(Zwz � λ (1� γ)Xwx )

�
= X0αx

Similarly wz = Z0αz

T. De Bie, K. Tretyakov Pattern Analysis
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Kernel CCA

Second step: plug this all in, and left-multiply:

�
X 0
0 Z

��
0 X0Z
Z0X 0

��
X0αx
Z0αz

�
=

λ

�
X 0
0 Z

��
(1� γ)X0X+ γI 0

0 (1� γ)Z0Z+ γI

��
X0αx
Z0αz

�

�
0 XX0ZZ0

ZZ0XX0 0

��
αx
αz

�
=

λ

�
(1� γ)XX0XX0 + γXX0 0

0 (1� γ)ZZ0ZZ0 + γZZ0

��
αx
αz

�

T. De Bie, K. Tretyakov Pattern Analysis
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Third step: apply kernel trick�
0 KxKz

KzKx 0

��
αx
αz

�
=

λ

�
(1� γ)K2x + γKx 0

0 (1� γ)K2z + γKz

��
αx
αz

�
Finally, assuming full rank of the kernels:

�
0 Kz
Kx 0

��
αx
αz

�
=

λ

�
(1� γ)Kx + γI 0

0 (1� γ)Kz + γI

��
αx
αz

�
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Kernel CCA

Note: it makes sense to normalise the weight vectors such that
w0xX

0Xwx = w0zZ
0Zwz = 1, or in terms of the dual vectors

α0xXX
0XX0αx = α0zZZ

0ZZ0wz = 1

α0xK
2
xαx = α0zK

2
zαz = 1

In summary:

wx = X0αx and wz = Z0αz can be used to project new data
points on these weight vectors (as before), as

x0wx =
n

∑
i=1

αx ,ikx (x , xi ) and z0wz =
n

∑
i=1

αz ,ikz (x , xi )

The algorithm itself �nds the dual vectors relying on kernels
only
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Kernel CCA �extracting several features

All this was for just the maximal correlation

Often di¤erent views on the same objects have more than one
�factor�in common

Hence, we want more than one such pair of weight vectors (or
equivalently dual vectors)

Easily achieved by taking more than one eigenvector

Consecutive eigenvectors correspond to weight vectors with
decreasing correlations (but potentially still large)
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Kernel CCA �applications

Potential applications:

Cross-language retrieval: which features underly di¤erent
translated versions of the same texts? (See project!)
Way to approach it:

�nd a set of eigenvectors of the CCA eigenvalue problem
project all documents on these eigenvalues
use these as representations
this is a more language-independent representation, where
semantically similar texts have similar representations

Image retrieval: which features underly both images and their
captions?

Which features explain both the DNA upstream region of a
gene and its expression behaviour?
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I hope you learned something about...

1 Little Green Men

2 Prophecies (by whoever or whatever...)
3 Where to �nd the corn crake
4 And some other things about pattern analysis and statistical
learning...
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Thanks!

Questions? (if there is time)

I�ll be here still on Monday and Tuesday until noon (catch me
if you have more questions)

Important general references:

John Shawe-Taylor and Nello Cristianini: Kernel methods for
pattern analysis, Cambridge University Press, 2004
Other joint work with JST and NC...
More references to come on the website
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