In the previous episodes

- O-notation

- **Data structure implementations:**
 - Lists, Queues, Heaps, Trees, Maps, Graphs

- **Algorithms:**
 - Sorting, Searching, Graph Algorithms
Algorithmic Techniques: Review

A typical algorithmic problem goes as follows:

SORTING
Given a list, produce a list, which has the same elements in sorted order.

MST
Given a graph, produce a tree, which is spanning and has minimal weight.

INPUT

OUTPUT

That satisfies certain CONDITIONS
Suppose you have an algorithmic problem at hand. What are the ways of approaching it?
Generic algorithmic techniques

- Exhaustive search
Generic algorithmic techniques

- Exhaustive search

```
ABDC
ACDB
BACD
BADC
BCDA
BDCA
ACBD
ADBC
CDAB
CABD
DABC
CADB
CBAD

ABCD
```

Algorithmics 14.04.2011
Generic algorithmic techniques

- Iterative improvement (directed search)
 - Start with a random state
 - If it is not optimal:
 - (e.g. there are two nearby positions in wrong order)
 - Improve
 - Repeat until solution optimal
Generic algorithmic techniques

- Iterative improvement (directed search)
 - Start with a random state
 - If it is not optimal:
 - (e.g. there are two nearby positions in wrong order)
 - Improve
 - Repeat until solution optimal

Bubble sort
Generic algorithmic techniques

- **Greedy algorithm**
 - Find the letter with the smallest value and put it to beginning
 - Repeat recursively
Generic algorithmic techniques

- **Greedy algorithm**
 - Find the letter with the smallest value and put it to beginning
 - Repeat recursively
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

- Single recurrence (reducing \(f(n) \) to \(f(n-1) \))

- Multiple recurrence (reducing \(f(n) \) to \([f(n-1), f(n-2), \ldots]\))
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

BDCA → BD → BDCA → ABCD

Merge sort
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

BDCA → BD → BD → ABCD

BDCA → BA → AB → ABCD

BDCA → CA → AC → ABCD
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

```
BDCA ➔ BD ➔ BD ➔ ABCD

BDCA ➔ BA ➔ AB ➔ ABCD
```

Quicksort
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

- Single recurrence (reducing $f(n)$ to $f(n-1)$)

 BDCA ➔ B DCA ➔ B ACD ➔ ABCD
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

- Single recurrence (reducing $f(n)$ to $f(n-1)$)

BDCA → B → DCA → B → ACD → ABCD

[Slide on Insertion sort]
Generic algorithmic techniques

- Reducing to simpler tasks
 - “Divide and conquer”

- Single recurrence (reducing $f(n)$ to $f(n-1)$)

- Multiple recurrence (reducing $f(n)$ to $[f(n-1), f(n-2), \ldots]$)

Diagram:

- BDCA → BDC
- BDC → BCD
- BCD → ACD
- ACD → ABCD

(bad) sort
Generic algorithmic techniques

- Exhaustive search
- Iterative improvement (directed search)
- Greedy algorithm
- Reducing to simpler tasks
 - Divide and conquer
 - Single recurrence
 - Multiple recurrence (Dynamic programming)
Generic algorithmic techniques

- Exhaustive search
- Iterative improvement
- Greedy algorithm
- Reducing to simpler tasks
 - Divide and conquer
 - Single recurrence
 - Multiple recurrence (Dynamic programming)
Generic algorithmic techniques

- Complementary to the abovementioned techniques, there are helpful “tricks”:
 - Time / CPU trade-off (parallel/distributed computation)
 - Time / space trade-off (precomputation, recomputation)
 - Time / quality trade-off (approximation, heuristics)
 - Randomization
Worst-case scenarios

- If you are unlucky, then the complexity of
 - Quicksort is …
 - Hashmap is …
Worst-case scenarios

- If you are unlucky, then the complexity of
 - Quicksort is $O(n^2)$

- Hashmap is $O(n^2)$ for n insertions

For $n = 10000$, this makes a 10 000 difference!

1 second becomes 3 hours!

- But why would you get unlucky?
 - Can’t we assume that inputs are random?
Inputs are NOT random!

- Example:
 - Bro is an IDS/packet filter
 - Bro sniffs IP packets and stores them in a hash map.

Example:

- Bro is an IDS/packet filter
- Bro collects packages and stores them in a hash map.
- It is easy to generate many packets that will hash to the same bucket.
- $O(n^2)$ performance!

<table>
<thead>
<tr>
<th>Packet rate</th>
<th>Packets sent</th>
<th>Drop rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16kb/s</td>
<td>192k</td>
<td>31%</td>
</tr>
<tr>
<td>16kb/s (clever)</td>
<td>128k</td>
<td>71%</td>
</tr>
<tr>
<td>64kb/s</td>
<td>320k</td>
<td>75%</td>
</tr>
<tr>
<td>160kb/s</td>
<td>320k</td>
<td>78%</td>
</tr>
</tbody>
</table>

Table 2: Total CPU time and CPU time spent in hash table code during an offline processing run of 64k attack and 64k random SYN packets.

Table 3: Overall drop rates for the different attack scenarios.

Inputs are malicious

Example:

<table>
<thead>
<tr>
<th>File version</th>
<th>Perl 5.6.1 program</th>
<th>Perl 5.8.0 program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perl 5.6.1</td>
<td>6506 seconds</td>
<td><2 seconds</td>
</tr>
<tr>
<td>Perl 5.8.0</td>
<td><2 seconds</td>
<td>6838 seconds</td>
</tr>
</tbody>
</table>

Table 1: CPU time inserting 90k short attack strings into two versions of Perl.
Avoiding the worst case

- The algorithm needs to have a “secret key” – something the adversary does not know about!

- If we do not have any information at all about this key, we call it “randomness”.

Algorithmics 14.04.2011
Avoiding the worst case

Instead of considering a single algorithm, consider a **family of algorithms**.

- HashMap_1
- HashMap_2
- HashMap_3
- HashMap_4
- \ldots
- $\text{HashMap}_{2^{32}}$
Avoiding the worst case

Instead of considering a single algorithm, consider a family of algorithms.

Each algorithm has its weak points:

- **HashMap₁**: Hard inputs: 43,21,1
- **HashMap₂**: Hard inputs: 10,15,1
- **HashMap₃**: Hard inputs: 22,33,6
- **HashMap₄**: Hard inputs: 26,43,2
- **HashMap₂³²**: Hard inputs: 39,2,74
Avoiding the worst case

Instead of considering a single algorithm, consider a family of algorithms.

But we’ll pick one at random, and the adversary won’t know which one!
Avoiding the worst case

Instead of considering a single algorithm, consider a family of algorithms.

- HashMap
 - Hard inputs: 43, 21, 1
- HashMap
 - Hard inputs: 10, 15, 1
- HashMap
 - Hard inputs: 22, 33, 6
- HashMap
 - Hard inputs: 26, 43, 2

... Universal hashing

- HashMap
 - Hard inputs: 39, 2, 74
Avoiding the worst case

- Instead of considering a single algorithm, consider a **family of algorithms**.

Randomized QuickSort

- QuickSort₁(A)
 - Hard inputs: 43, 21, 1
- QuickSort₂(A)
 - Hard inputs: 10, 15, 1
- QuickSort₃(A)
 - Hard inputs: 22, 33, 6
- QuickSort₄(A)
 - Hard inputs: 26, 43, 2
- QuickSort₂₃₂(A)
 - Hard inputs: 39, 2, 74
The worst case can be common

- Instead of considering a single algorithm, consider a **family of algorithms**.

- Search₁(A) → Does badly in 99% cases
- Search₂(A) → Does badly in 99% cases
- Search₃(A) → Does badly in 99% cases
- Search₄(A) → Does badly in 99% cases

- Search₂₃₂(A) → Does badly in 99% cases

Randomized search
You may need to avoid symmetry

Instead of considering a single algorithm, consider a **family of algorithms**.
Las Vegas Algorithms

- This approach is called “Las Vegas algorithms”

- The set of problems which have a polynomial Las-Vegas solution is called ZPP (Zero error Probabilistic Polynomial)

Obviously, $P \subseteq ZPP$.
It is not known whether $P = ZPP$.
Another reason for randomness

- Sometimes, *sampling from a probability distribution* around the correct answer is much easier than producing the answer.

![Diagram showing a family of functions with yes and no outcomes.](image)

Again, a family of functions.

We know that most produce the correct answer (but we don’t know which ones).
Example

- Given a property, that holds for at least 50% of nodes, find a node with that property (e.g. find a leaf in a binary tree)
Example

- Given a property, that holds for at least 50% of nodes, find a node with that property (e.g. find a leaf in a binary tree)

```javascript
function find(objects, randomness) {
    return (random object)
}
```
Example

- **Amplification:**
 - One run: fails with probability 0.50
 - Two runs: fails with probability 0.25
 - 64 runs: fails with probability 2^{-64}
Monte-Carlo Algorithms

- Monte-Carlo algorithms have nondeterministic output, but deterministic run time. (for Las-Vegas it is the other way around)

- The set of Monte-Carlo solvable problems is called BPP (Bounded error Probability Polynomial-time)

\[P \subset ZPP \subset BPP, \text{ but it is not known whether } ZPP=\text{BPP}. \]

Modern cryptography is all about Monte-Carlo algorithms

So are statistics, optimization, and data mining.
Remote file comparison

Problem: How to check that a local file is equal to a remote one?
Remote file comparison

- Problem: How to check that a local file is equal to a remote one?
- Solution: Verify that hashes are equal.
Monte-Carlo Examples

- Matrix multiplication verification
 - Problem: verify that $A = BC$
Monte-Carlo Examples

- **Matrix multiplication verification**
 - **Problem:** verify that \(A = BC \)
 - **Solution:** sample random vectors \(v \) and check that \(Av = B(Cv) \)
Monte-Carlo Examples

- Primality testing
 - Problem: verify that p is prime
 - Solution* [Fermat test]: check that $a^p = a \mod p$
Monte-Carlo Examples

- Primality testing
 - Problem: verify that p is prime
 - Solution* [Fermat test]:
 check that $a^p = a \mod p$

PRIMES is in P

Manindra Agrawal Neeraj Kayal
Nitin Saxena* 2002, 2005
Monte-Carlo Examples

- Max 3-SAT
 - Given a set of 3-CNF formula, find a variable assignment that satisfies the largest number of clauses

\[
\begin{align*}
 x_1 & \lor \overline{x}_2 \lor x_4 \\
 x_2 & \lor x_5 \lor x_6 \\
 \overline{x}_2 & \lor x_5 \lor \overline{x}_8 \\
 x_4 & \lor \overline{x}_8 \lor x_9 \\
 x_5 & \lor x_6 \lor \overline{x}_7 \\
 \overline{x}_5 & \lor x_7 \lor \overline{x}_8 \\
 \overline{x}_6 & \lor \overline{x}_7 \lor x_9
\end{align*}
\]
Monte-Carlo Examples

Solution:

Pick a variable assignment at random!

Let \(Z_i = \begin{cases} 1 & \text{if clause } i \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \)

The total number of satisfied clauses is then

\[Z = \sum_i Z_i \]

And the expected number is:

\[
E[Z] = E \left[\sum_i Z_i \right] = \sum_i E[Z_i] = \sum_i \frac{7}{8} = \frac{7}{8}n
\]

Surprisingly, it is close to the best possible algorithm
Summary

- **Randomized algorithms**
 - Use a *family* of algorithms parameterized by r.
 - Choose r *randomly* (i.e. r is a total secret)
 - Use this secret to:
 - Avoid adversaries (Las-Vegas algorithms)
 - Speed up search (Las-Vegas algorithms)
 - Break symmetries (Las-Vegas communication)
 - Select one option of many (Monte-Carlo algorithms)
 - Verify things (Monte-Carlo verification)