Lists: Array

L = int[MAX_SIZE]
L[2]=7

Linear, sequential, list ...

Linear Lists

• Operations which one may want to perform on a linear list of n elements include:
 – gain access to the kth element of the list to examine and/or change the contents
 – insert a new element before or after the kth element
 – delete the kth element of the list

Abstract Data Type (ADT)

- High-level definition of data types
- An ADT specifies
 - A collection of data
 - A set of operations on the data or subsets of the data
- ADT does not specify how the operations should be implemented
- Examples
 - vector, list, stack, queue, deque, priority queue, table (map), associative array, set, graph, digraph

ADT

- A datatype is a set of values and an associated set of operations
- A datatype is abstract iff it is completely described by its set of operations regardless of its implementation
- This means that it is possible to change the implementation of the datatype without changing its use
- The datatype is thus described by a set of procedures
- These operations are the only thing that a user of the abstraction can assume

Abstract data types:

- Dictionary
- Stack (LIFO)
- Queue (FIFO)
- Queue (double-ended)
- Priority queue (fetch highest-value object)
- ...

Dictionary

- Container of key-element (k,e) pairs
- Required operations:
 - insert(k,e),
 - remove(k),
 - find(k),
 - isEmpty()
- May also support (when an order is provided):
 - closestKeyBefore(k),
 - closestElemAfter(k)
- Note: No duplicate keys

Some data structures for Dictionary ADT

- Unordered
 - Array
 - Sequence/list
- Ordered
 - Array
 - Sequence (Skip Lists)
 - Binary Search Tree (BST)
 - AVL
 - (2; 4) Trees
 - B-Trees
- Valued
 - Hash Tables
 - Extendible Hashing

Lists: Array

- Insert 8 after L[2]
- Delete last
Lists: Array

- Insert: $O(n)$
- Delete: $O(n)$
- Access i: $O(1)$
- Insert to end: $O(1)$
- Delete from end: $O(1)$
- Search: $O(n)$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Stack

- push(x) -- add to end (add to top)
- pop() -- fetch from end (top)

- $O(1)$ in all reasonable cases 😊
- LIFO – Last In, First Out

Linear Lists

- Other operations on a linear list may include:
 - determine the number of elements
 - search the list
 - sort a list
 - combine two or more linear lists
 - split a linear list into two or more lists
 - make a copy of a list

Linked lists

Linked lists: add/delete

Operations

- Array indexed from 0 to $n - 1$:

<table>
<thead>
<tr>
<th>$k = 1$</th>
<th>$1 < k < n$</th>
<th>$k = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the kth element</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>insert before or after the kth element</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>delete the kth element</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

- Singly-linked list with head and tail pointers

<table>
<thead>
<tr>
<th>$k = 1$</th>
<th>$1 < k < n$</th>
<th>$k = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the kth element</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>insert before or after the kth element</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>delete the kth element</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

under the assumption we have a pointer to the kth node, $O(k)$ otherwise
Improving Run-Time Efficiency

• We can improve the run-time efficiency of a linked list by using a doubly-linked list:

Singly-linked list:

- Improvements at operations requiring access to the previous node
- Increases memory requirements...

Doubly-linked list:

• Comparing the tables:

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(1 < k < n)</th>
<th>(k = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insert before or after the (k)th element</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

* under the assumption we have a pointer to the \(k \)th node, \(O(1) \) otherwise

Introduction to linked lists:

definition

• Consider the following struct definition

```c
struct node
{
    string word;
    int num;
    node *next;  // pointer for the next node
};
```

```c
node *p = new node;
```

node *p = new node;

inserting a node

```c
node *p;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
```

```c
node *q;
q = new node;
```

adding a new node

```c
node *p;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
```

```c
node *q;
q = new node;
```

```c
node *p;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
```

```c
node *q;
q = new node;
```
Introduction to linked lists

- node *p, *q;
- p = new node;
- p->num = 5;
- p->word = "Ali";
- p->next = NULL;
- q = new node;
- q->num = 8;
- q->word = "Veli";

- p->next = q;
- q->next = NULL;

Pointers

- p = new node; delete p;
- p = new node[20];
- p = malloc(sizeof(node)); free p;
- p = malloc(sizeof(node)*20);
- (p+10)->next = NULL; /* 11th elements */

Book-keeping

- malloc, new – “remember” what has been created free(p), delete (C/C++)
- When you need many small areas to be allocated, reserve a big chunk (array) and maintain your own set of free objects
- Elements of array of objects can be pointed by the pointer to an object.

Object

- Object = new object_type;

- Equals to creating a new object with necessary size of allocated memory (delete can free it)

Some links

- Pointer basics:
 http://cslibrary.stanford.edu/106/

- C++ Memory Management : What is the difference between malloc/free and new/delete?
To test and understand – use int’s

• If you want to test pointers and linked list etc. data structures, but do not have pointers familiar (yet)

• Use arrays and indexes to array elements instead…

Replacing pointers with array index

Maintaining list of free objects

Multiple lists, single free list

Hack: allocate more arrays …

XOR linked lists are a data structure used in computer programming. They take advantage of the bitwise exclusive disjunction (XOR) operation, here denoted by ⊕, to decrease storage requirements for doubly-linked lists. An ordinary doubly-linked list stores addresses of the previous and next list items in each list node, requiring two address fields.
Queue
(basic idea, does not contain all controls!)

<table>
<thead>
<tr>
<th>F</th>
<th>L</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

First = List[F]
Last = List[L-1]
Full: return (L==MAX_SIZE)
Empty: F<0 or F>=L

• Queue
 • `enqueue(x)` - add to end
 • `dequeue()` - fetch from beginning
 • FIFO – First In First Out
 • O(1) in all reasonable cases 😊

Circular buffer

• A circular buffer or ring buffer is a data structure that uses a single, fixed-size buffer as if it were connected end-to-end. This structure lends itself easily to buffering data streams.

Circular Queue

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

First = List[F]
Add_to_end(x) : { List[L]=x ; L= (L+1) % MAX_SIZE }
Last = List[(L-1+MAX_SIZE) % MAX_SIZE]
Full: return (L==MAX_SIZE)
Empty: F=L

• Circular Queue
 • `enqueue(x)` - add to end
 • `dequeue()` - fetch from beginning
 • FIFO – First In First Out
 • O(1) in all reasonable cases 😊

Stack

• `push(x)` -- add to end (add to top)
• `pop()` -- fetch from end (top)
• O(1) in all reasonable cases 😊
• LIFO – Last In, First Out

Stack based languages

• Implement a postfix calculator
 – Reverse Polish notation
• 5 4 3 * 2 - + => 5+((4*3)-2)
• Very simple to parse and interpret
• FORTH, Postscript are stack-based languages
Array based stack

• How to know how big a stack shall be?

\[\begin{array}{c}
3 & 6 & 7 & 5 \\
3 & 6 & 7 & 5 & 2 & 1
\end{array} \]

• When full, dynamically allocate bigger table, and copy all previous values there

• O(n) ?

• When full, create 2x bigger table, copy previous n elements:

• After every \(2^k\) insertions, perform \(O(n)\) copy

• \(O(n)\) individual insertions +

• \(n/2 + n/4 + n/8 \ldots\) copy-ing

• Total: \(O(n)\) effort!

• when \(n=32\) -> 33 \(\) (copy 32, insert 1)

• delete: 33->32

 – should you delete immediately?
 – Delete only when becomes less than 1/4th full

 – Have to delete at least \(n/2\) to decrease
 – Have to add at least \(n\) to increase size
 – Most operations, \(O(1)\) effort
 – But few operations take \(O(n)\) to copy
 – For any \(m\) operations, \(O(m)\) time

Amortized analysis

• Analyze the time complexity over the entire "lifespan" of the algorithm

• Some operations that cost more will be “covered” by many other operations taking less

Lists and dictionary...

• How to maintain a dictionary using (linked) lists?

• Is \(k\) in \(D\) ?

 – go through all elements \(d\) of \(D\), test if \(d==k\) \(O(n)\)
 – If sorted: \(d=\text{first}(D)\); while(\(d<\text{k}\)) \(d=\text{next}(D)\);
 – on average \(n/2\) tests...

• Add(\(k,D\)) => insert(\(k,D\)) = \(O(1)\) or \(O(n)\) – test for uniqueness

Array based sorted list

• is \(d\) in \(D\) ?

• Binary search in \(D\)
Binary search / recursive

BinarySearch(A[0..N-1], value, low, high)
{
 if (high < low)
 return -1 // not found
 mid = low + ((high - low) / 2) // Note: not (low + high) / 2 !!
 if (A[mid] > value)
 return BinarySearch(A, value, low, mid-1)
 else if (A[mid] < value)
 return BinarySearch(A, value, mid+1, high)
 else
 return mid // found
}

Binary search – Iterative

BinarySearch(A[0..N-1], value)
{
 low = 0; high = N - 1;
 while (low <= high)
 {
 mid = low + ((high - low) / 2) // Note: not (low + high) / 2 !!
 if (A[mid] > value)
 high = mid - 1
 else if (A[mid] < value)
 low = mid + 1
 else
 return mid // found
 }
 return -1 // not found
}

Work performed

• x <=> A[18] ? <
• x <=> A[9] ? >
• x <=> A[13] ? ==

• O(lg n)

Sorting

• given a list, arrange values so that
• n elements => n! possible orderings
• One test L[i] <= L[j] can divide n! to 2
 − Make a binary tree and calculate the depth
• log(n!) = Ω (n log n)
• Hence, lower bound for sorting is Ω (n log n)
 − using comparisons...

Proof: log(n!) = Ω (n log n)

• log(n!) = log n + log (n-1) + log(n-2) + ... log(1)
 >= n/2 * log(n/2)
 = Ω (n log n)

Decision-tree example

Sort (a1, a2, a3)
= (9, 4, 6):

Each leaf contains a permutation (π(1), π(2), ..., π(n)) to indicate the ordering a_{π(1)} ≤ a_{π(2)} ≤ ... ≤ a_{π(n)} has been established.
Decision tree model

- n! orderings (leaves)
- Height of such tree?

\[
\log_2(n!) \geq \sum_{i=1}^{n/2} \log_2 i \\
\geq \sum_{i=1}^{n/2} \log_2 n/2 \\
\geq \frac{n}{2} \log_2 \frac{n}{2} \\
= \Omega(n \log n).
\]

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Merge sort

Merge-Sort(A,p,r)
if p<r
then q = (p+r)/2 // floor
Merge-Sort(A, p, q)
Merge-Sort(A, q+1,r)
Merge(A, p, q, r)

It was invented by John von Neumann in 1945.
Example

• Applying the merge sort algorithm:

Merge of two lists: \(\Theta(n) \)

A, B – lists to be merged
L = new list; // empty
while(A not empty and B not empty)
if A.first() <= B.first() then
 append(L, A.first()); A = rest(A);
else
 append(L, B.first()); B = rest(B);
append(L, A); // all remaining elements of A
append(L, B); // all remaining elements of B
return L

Wikipedia / viz.

Run-time Analysis of Merge Sort

• Thus, the time required to sort an array of size \(n > 1 \) is:
 – the time required to sort the first half,
 – the time required to sort the second half, and
 – the time required to merge the two lists
• That is:

\[
T(n) = \begin{cases}
\Theta(1) & n = 1 \\
2T(\frac{n}{2}) + \Theta(n) & n > 1
\end{cases}
\]

Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

Merge sort

• Worst case, average case, best case ...
\(\Theta(n \log n) \)
• Common wisdom:
 – Requires additional space for merging (in case of arrays)
• Homework*: develop in-place merge of two lists implemented in arrays / compare speed/
QuickSort

- Divide-and-conquer algorithm.
- Sorts “in place” (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Divide and Conquer

QuickSort an \(n\)-element array:

1. **Divide:** Partition the array into two subarrays around a pivot \(x\) such that elements in lower subarray \(\leq x\) are elements in upper subarray \(\geq x\).

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Trivial.

 Key: Linear-time partitioning subroutine.

Pseudocode for quicksort

```c
QUICKSORT(A, p, r)
if p < r
    then q ← PARTITION(A, p, r)
    QUICKSORT(A, p, q−1)
    QUICKSORT(A, q + 1, r)

Initial call: QUICKSORT(A, 1, n)
```

Partioning subroutine

```c
PARTITION(A, p, q)
    x ← A[p]
    pivot = A[p]
    i ← p
    for j ← p + 1 to q
        do if A[j] ≤ x
            then i ← i + 1
    return i
```

Partitioning version 2

```
pivot = A[R]; //
i=L; j=R-1;
while( i<j )
    while ( A[i] < pivot ) i++ ; // will stop at pivot latest
    while ( i<j and A[j] >= pivot ) j--;
A[R]=A[i];
A[i]=pivot;
return i;
```
Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[
T(n) = T(0) + T(n-1) + \Theta(n) \\
= \Theta(1) + T(n-1) + \Theta(n) \\
= \Theta(n^2) \quad \text{(arithmetic series)}
\]

Best-case analysis

For intuition only!

If we’re lucky, **PARTITION** splits the array evenly:

\[
T(n) = 2T(n/2) + \Theta(n) \\
= \Theta(n \log n) \quad \text{(same as sort)}
\]

What if the split is always \(\frac{1}{10} : \frac{9}{10} \)?

\[
T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)
\]

What is the solution to this recurrence?

Analysis of “almost-best” case

\[
T(\frac{1}{10}n) \quad T(\frac{9}{10}n)
\]

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky, ...,

\[
I(n) = 2U(n/2) + \Theta(n) \quad \text{lucky} \\
U(n) = I(n-1) + \Theta(n) \quad \text{unlucky}
\]

Solving:

\[
I(n) = 2(I(n/2) + \Theta(n/2)) + \Theta(n) \\
= 2I(n/2 - 1) + \Theta(n) \\
= \Theta(n \log n) \quad \text{Lucky!}
\]

How can we make sure we are usually lucky?

Choice of pivot

- Select median of three ...
- Select random – opponent cannot choose the winning strategy against you!
Randomized quicksort

Idea: Partition around a *random* element.

- Running time is independent of the input order.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.

Random pivot

Select pivot randomly from the region (blue) and swap with last position

Select pivot as a median of 3 [or more] random values from region

Apply non-recursive sort for array less than 10-20

Randomized quicksort analysis

Let $T(n)$ = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the indicator random variable X_k =

- 1 if PARTITION generates a $k : n-k-1$ split,
- 0 otherwise.

$E[X_k] = \Pr[X_k = 1] = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis (continued)

$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & \vdots \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \\ \end{cases}$

$= \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$

Calculating expectation

$E[T(n)] = \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$

Take expectations of both sides.

Calculating expectation

$E[T(n)] = \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$

Linearity of expectation.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(k) + T(n-k-1) + \Theta(n))\right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]
\]

Independence of \(X_k \) from other random choices.

Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(k) + T(n-k-1) + \Theta(n))\right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n \).

Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(k) + T(n-k-1) + \Theta(n))\right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Summations have identical terms.

Hairy recurrence

\[
E[T(n)] = 2 \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)
\]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).

Prove: \(E[T(n)] \leq an \lg n \) for constant \(a > 0 \).

• Choose \(a \) large enough so that \(an \lg n \)

dominates \(E[T(n)] \) for sufficiently small \(n \geq 2 \).

Use fact: \(\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{2} n^2 \) (exercise).

Substitution method

\[
E[T(n)] \leq 2 \sum_{k=2}^{n-1} ak \lg k + \Theta(n)
\]

\[
= 2a \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)
\]

\[
= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)
\]

\[
\leq an \lg n
\]

if \(a \) is chosen large enough so that \(an/4 \) dominates the \(\Theta(n) \).

QuickSort in practice

• QuickSort is a great general-purpose sorting algorithm.

• QuickSort is typically over twice as fast as merge sort.

• QuickSort can benefit substantially from code tuning.

• QuickSort behaves well even with caching and virtual memory.
We can sort in $O(n \log n)$

- Is that the best we can do?
- Remember: using comparisons $<$, $>$, $<=$, $>=$
 we can not do better than $O(n \log n)$

How fast can we sort n integers?

Sorting in linear time

Counting sort: No comparisons between elements.
- **Input:** $A[1..n]$, where $A[j] \in \{1, 2, ..., k\}$.
- **Output:** $B[1..n]$, sorted.
- **Auxiliary storage:** $C[1..k]$.

Counting sort

```plaintext
for i ← 1 to k
    do C[i] ← 0
for j ← 1 to n
    do C[A[j]] ← C[A[j]] + 1  ▷ C[i] = |{key = i}|
for i ← 2 to k
    do C[i] ← C[i] + C[i-1]  ▷ C[i] = |{key ≤ i}|
for j ← n downto 1
    do B[C[A[j]]] ← A[j]  
        C[A[j]] ← C[A[j]] − 1
```

Loop 1

<table>
<thead>
<tr>
<th>A:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for $i ← 1$ to k
 do $C[i] ← 0$

Loop 2

<table>
<thead>
<tr>
<th>A:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for $j ← 1$ to n
 do $C[A[j]] ← C[A[j]] + 1$ ▷ $C[i] = |\{key = i\}|$
20.2.2011

Loop 3

\[
\begin{array}{cccc}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & & & & & \\
C: & 1 & 0 & 2 & 2 \\
\end{array}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \text{▷ } C[i] = |\{\text{key } \leq i\}|
\]

Loop 4

\[
\begin{array}{cccc}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & & 3 & 4 & & \\
C: & 1 & 1 & 2 & 5 \\
\end{array}
\]

\[
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]

Analysis

- \(\Theta(k)\) for \(i \leftarrow 1\) to \(k\)
 - do \(C[i] \leftarrow 0\)

- \(\Theta(n)\) for \(j \leftarrow 1\) to \(n\)
 - do \(C[A[j]] \leftarrow C[A[j]] + 1\)

- \(\Theta(k)\) for \(i \leftarrow 2\) to \(k\)
 - do \(C[i] \leftarrow C[i] + C[i-1]\)

- \(\Theta(n)\) for \(j \leftarrow n\) downto \(1\)
 - do \(B[C[A[j]]] \leftarrow A[j]\)
 - do \(C[A[j]] \leftarrow C[A[j]] - 1\)

- \(\Theta(n + k)\)

Running time

If \(k = O(n)\), then counting sort takes \(\Theta(n)\) time.
- But, sorting takes \(\Omega(n \log n)\) time!
- Where’s the fallacy?

Answer:
- *Comparison sorting* takes \(\Omega(n \log n)\) time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

\[
\begin{array}{cccc}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & 1 & 3 & 3 & 4 & 4 \\
\end{array}
\]

Exercise: What other sorts have this property?

Radix sort

- *Origin:* Herman Hollerith’s card-sorting machine for the 1890 U.S. Census. (See Appendix 4.)
- Digit-by-digit sort.
- Hollerith’s original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.
Radix sort

Radix-Sort(A,d)
1. for i = 1 to d
2. do use a stable sort to sort A on digit i

Operation of radix sort

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order \(t-1\) digits.

- Sort on digit \(t\)
 - Two numbers that differ in digit \(t\) are correctly sorted.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort \(n\) computer words of \(b\) bits each.
- Each word can be viewed as having \(b/r\) base-2\(^r\) digits.

Example: 32-bit word

\[
\begin{array}{cccc}
8 & 8 & 8 & 8 \\
\end{array}
\]

\(r = 8 \Rightarrow b/r = 4 \) passes of counting sort on base-2\(^8\) digits; or \(r = 16 \Rightarrow b/r = 2 \) passes of counting sort on base-2\(^{16}\) digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes \(\Theta(n + k)\) time to sort \(n\) numbers in the range from 0 to \(k - 1\). If each \(b\)-bit word is broken into \(r\)-bit pieces, each pass of counting sort takes \(\Theta(n + 2^r)\) time. Since there are \(b/r\) passes, we have

\[
T(n, b) = \Theta \left(\frac{b}{r} \left(n + 2^r\right) \right).
\]

Choose \(r\) to minimize \(T(n, b)\);

- Increasing \(r\) means fewer passes, but as \(r \gg \lg n\), the time grows exponentially.
Choosing r

$$T(n, b) = \Theta\left(\frac{b}{r}(n + 2^r)\right)$$

Minimize $T(n, b)$ by differentiating and setting to 0. Or, just observe that we don’t want $2^r \gg n$, and there’s no harm asymptotically in choosing r as large as possible subject to this constraint. Choosing $r = \log n$ implies $T(n, b) = \Theta(b n / \log n)$.

* For numbers in the range from 0 to $n^d - 1$, we have $b = d \log n \Rightarrow$ radix sort runs in $\Theta(d n)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \log 2000 \rceil = 11$ passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.

Radix sort using lists (stable)

Why not from left to right?

- Swap ‘0’ with first ‘1’
- Idea 1: recursively sort first and second half

– Exercise?
Bitwise sort left to right

- Idea2:
 - swap elements only if the prefixes match...
 - For all bits from most significant
 - advance when 0
 - when 1 → look for next 0
 - if prefix matches, swap
 - otherwise keep advancing on 0’s and look for next 1

/* Historical sorting — was used in Univ. of Tartu using assembler… */
/* C implementation — Jaak Vilo, 1989 */

void bitwisesort(SORTTYPE *ARRAY, int size)
{

/* Set most significant bit 1 */

int i, j, tmp, nrbits;

register SORTTYPE mask, curbit, group;

nrbits = sizeof(SORTTYPE) * 8;

curbit = 1 << (nrbits - 1);

/* Save current prefix snapshot */

mask = 0;

group = ARRAY[i] & mask;

j = i;

/* Memorize location of 1 */

for(;;)
{
 if (++i >= size) goto array_end;

 /* Reached end of array */

 if (ARRAY[i] & mask) goto new_mask;

 /* New prefix */

 if (! (ARRAY[i] & curbit))
 {
 tmp = ARRAY[i];
 ARRAY[i] = ARRAY[j];
 ARRAY[j] = tmp;
 j += 1;
 } /* Swap and increase to the next possible 1 */

array_end:

mask = mask | curbit;

/* Area under mask is now sorted */

curbit >>= 1;

/* Until all bits have been sorted… */

}

Bitwise left to right sort

void bitwisesort(SORTTYPE *ARRAY, int size)
{

/* Set most significant bit 1 */

int i, j, tmp, nrbits;

register SORTTYPE mask, curbit, group;

nrbits = sizeof(SORTTYPE) * 8;

curbit = 1 << (nrbits-1);

mask = 0;

Jaak Vilo, Univ. of Tartu

Bitwise from left to right

0010000
0010010
0101000
0101100
1001000
1001001
1111000

• Swap ‘0’ with first ‘1’

Jaak Vilo, Univ. of Tartu

Bucket sort

- Assume uniform distribution
- Allocate O(n) buckets
- Assign each value to pre-assigned bucket

Sort small buckets with insertion sort

0 1 2 3 4 5 6 7 8 9

0 / .12 .13 .21 .23 .25 .39 / .68 .72 .78 .94

Jaak Vilo, Univ. of Tartu
http://sortbenchmark.org/

- Minutesort – max amount sorted in 1 minute
 - 116GB in 58.7 sec (Jim Wyllie, IBM Research)
 - 40-node 80-Itanium cluster, SAN array of 2,520 disks
- 2009, 500 GB Hadoop 1406 nodes x (2 Quadcore Xeons, 8 GB memory, 4 SATA)
 - Owen O’Malley and Arun Murthy
 - Yahoo Inc.
- Performance / Price Sort and PennySort

Year 2009 Results

<table>
<thead>
<tr>
<th></th>
<th>Penny</th>
<th>Indy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>116 GB</td>
<td>116 GB</td>
</tr>
<tr>
<td></td>
<td>58.7 sec</td>
<td>58.7 sec</td>
</tr>
<tr>
<td></td>
<td>40-node</td>
<td>40-node</td>
</tr>
<tr>
<td></td>
<td>80-Itanium</td>
<td>80-Itanium</td>
</tr>
<tr>
<td></td>
<td>cluster,</td>
<td>cluster,</td>
</tr>
<tr>
<td></td>
<td>SAN array of 2,520 disks</td>
<td>SAN array of 2,520 disks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort Benchmark

- http://sortbenchmark.org/
- Sort Benchmark Home Page
- We have a new benchmark called GraySort, in memory of the father of the sort benchmarks, Jim Gray. It replaces TeraByteSort which is now retired.
- The submission deadline is new 15 April 2009.
- New rules for GraySort:
 - The input file size is now minimum ~100TB or 1T records. Entries with larger input sizes also qualify.
 - We now provide a new input generator that works in parallel and generates binary data. See below.
- For the Daytona category, we have two new requirements. (1) The sort must run continuously (repeatedly) for a minimum 1 hour. (This is a minimum reliability requirement).
 - The system cannot overwrite the input file.

Order statistics

- Minimum – the smallest value
- Maximum – the largest value
- In general i”th value.
- Find the median of the values in the array
- Median in sorted array A :
 - n is odd \(A[(n+1)/2] \)
 - n is even \(A[(n+1)/2] \) or \(A[(n+1)/2] \)}
Minimum

Minimum(A)
1 min = A[1]
2 for i = 2 to length(A)
3 if min > A[i]
4 then min = A[i]
5 return min

n-1 comparisons.

Min and max together

• compare every two elements A[i], A[i+1]
• Compare larger against current max
• Smaller against current min
• \(3\sqrt[4]{n} / 2\)

Selection in expected O(n)

Randomised-select(A, p, r, i)
if p=r then return A[p]
q = Randomised-Partition(A, p, r)
k = q - p + 1 // nr of elements in subarr
if i<= k
then return Randomised-Partition(A, p, q, i)
else return Randomised-Partition(A, q+1, r, i-k)

Conclusion

• Sorting in general O(n log n)
• Quicksort is rather good
• Linear time sorting is achievable when one does not assume only direct comparisons
• Find i^{th} value – expected O(n)
• Find i^{th} value: worst case O(n) – see CLRS

Lists: Array

Lists:

<table>
<thead>
<tr>
<th>size</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Insert 8 after L[2]

Delete last

Linked lists

<table>
<thead>
<tr>
<th>head</th>
<th>tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Singly linked

Doubly linked
Ok...

- lists – a versatile data structure for various purposes
- Sorting – a typical algorithm (many ways)
- Which sorting methods for array/list?

- Array: most of the important (e.g. update) tasks seem to be $O(n)$, which is bad

Can we search faster in linked lists?

- Why sort linked lists if search anyway $O(n)$?
- Linked lists:
 - what is the “mid-point” of any sublist?
 - Therefore, binary search can not be used...
- Or can it?

Skip List

A skip list, introduced by Pagh [Pagh 1999], is a randomized balanced tree data structure organized as a tower of increasingly sparse linked lists. Level 0 of a skip list is a linked list of all nodes in increasing order by key. For each i greater than 0, each node is level i – 1 appears in level i independently with some fixed probability p. In a doubly-linked skip list, each node stores a predecessor pointer and a successor pointer for each list in which it appears, for an average of $p n$ pointers per node. The lists at the higher levels act as “reverse lists” that allow the sequence of nodes to be traversed upright. Searching for a node with a particular key involves scanning first in the highest level, and repeatedly dropping down a level whenever it becomes clear that the node is not in the current level. Considering the search path in reverse shows that no more than $O(p n)$ nodes are searched on average per level, giving an average search time of $O(p^{-1/2} n^{1/2})$ with n nodes at level 0. Skip lists have been extensively studied [Pagh 1999; Pagh et al. 1999; Bentley 1992; Kirschbaum and Preparata 1991; Kirschbaum et al. 1999], and because they support no global balancing operations are particularly well in parallel systems [Khemani et al. 1996; Garabi and Hoepegan 1997].

Fig. 1. A skip list with $n = 8$ nodes and $2 = 3$ levels.

```c
typedef struct nodeStructure *node;
typedef struct nodeStructure{
    keyType key;
    valueType value;
    node forward[1];  /* variable sized array of forward pointers */
};
```

Skip Lists

- Build several lists at different “skip” steps
- $O(n)$ list
- Level 1: $\sim n/2$
- Level 2: $\sim n/4$
- ...
- Level $\log n \sim 2\cdot3$ elements...
Outline and Reading

- What is a skip list (§3.5)
- Operations
 - Search (§3.5.1)
 - Insertion (§3.5.2)
 - Deletion (§3.5.2)
- Implementation
- Analysis (§3.5.3)
 - Space usage
 - Search and update times

Search

- We search for a key \(x \) in a skip list as follows:
 - We start at the first position of the top list
 - At the current position \(p \), we compare \(x \) with \(p \rightarrow \text{keyafter}(p) \)
 - \(x = p \rightarrow \text{keyafter}(p) \): return \(\text{elementafter}(p) \)
 - \(x > p \rightarrow \text{keyafter}(p) \): we "scan forward"
 - \(x < p \rightarrow \text{keyafter}(p) \): we "drop down"
 - If we try to drop down past the bottom list, we return \(\text{NO_SUCH_KEY} \)
- Example: search for 78

Insertion

- To insert an item \((x, e) \) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with \(i \) the number of times the coin came up heads
 - If \(i \leq k \), we add to the skip list new lists \(S_{i-1}, \ldots, S_0 \), each containing only the two special keys
 - We search for \(x \) in the skip list and find the positions \(p_0, p_1, \ldots, p_i \) of the items with largest key less than \(x \) in each list \(S_0, S_1, \ldots, S_i \)
 - For \(j = i, \ldots, 0 \), we insert item \((x, e) \) into list \(S_j \) after position \(p_j \)
- Example: insert key 15, with \(i = 2 \)

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution:
 - It contains statements of the type
 \[
 b = \text{random()}
 \]
 - if \(b = 0 \) do \(A \) …
 - else \(b = 1 \) do \(B \) …
 - Its running time depends on the outcomes of the coin tosses

Deletion

- To remove an item with key \(x \) from a skip list, we proceed as follows:
 - We search for \(x \) in the skip list and find the positions \(p_0, p_1, \ldots, p_i \) of the items with key \(x \), where position \(p_0 \) is in list \(S_0 \)
 - We remove positions \(p_0, p_1, \ldots, p_i \) from the lists \(S_0, S_1, \ldots, S_i \)
 - We remove all but one list containing only the two special keys
- Example: remove key 34

What is a Skip List

- A skip list for a set \(S \) of distinct (key, element) items is a series of lists \(S_0, S_1, \ldots, S_k \) such that
 - Each list \(S_i \) contains the special keys \(+ \) and \(- \)
 - List \(S_0 \) contains the keys of \(S \) in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_k \)
 - List \(S_k \) contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT

Outline and Reading
Implementation

- We can implement a skip list with quad-nodes.
- A quad-node stores:
 - Item
 - Link to the node before
 - Link to the node after
 - Link to the node below
 - Link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting \(i \) consecutive heads when flipping a coin is \(1/2^i \).
 - Fact 2: If each of \(n \) items is present in a set with probability \(p \), the expected size of the set is \(n p \).

Search and Update Times

- When we scan forward in a list, the destination key does not belong to a higher list.
 - A scan-forward step is associated with a former coin toss that gave tails.
- By Fact 4, in each list the expected number of scan-forward steps is \(2 \).
 - Thus, the expected number of scan-forward steps is \(O(\log n) \).
- We conclude that a search in a skip list takes \(O(\log n) \) expected time.
 - The analysis of insertion and deletion gives similar results.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with \(n \) items:
 - The expected space used is \(O(n) \).
 - The expected search, insertion and deletion time is \(O(\log n) \).
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.
Conclusions

• Abstract data types **hide implementations**
• Important is the functionality of the ADT
• *Data structures* and *algorithms* determine the speed of the operations on data
• Linear data structures provide good versatility
• Sorting – a most typical need/algorithm
• Sorting in $O(n \log n)$: Merge Sort, Quicksort
• Solving Recurrences – means to analyse
• Skip lists – $\log n$ **randomised** data structure