Advanced Algorithmics (6EAP)

Linear structures, sorting, searching, etc

Jaak Vilo
2010 Spring

Lists: Array

\[L = \text{int}[\text{MAX_SIZE}] \]
\[L[2] = 7 \]

Linear Lists

• Operations which one may want to perform on a linear list of \(n \) elements include:

 – gain access to the \(k \)th element of the list to examine and/or change the contents
 – insert a new element before or after the \(k \)th element
 – delete the \(k \)th element of the list

Abstract Data Type (ADT)

• High-level definition of data types
• An ADT specifies
 – A collection of data
 – A set of operations on the data or subsets of the data
• ADT does not specify how the operations should be implemented
• Examples
 – vector, list, stack, queue, deque, priority queue, table (map), associative array, set, graph, digraph

ADT

• A datatype is a set of values and an associated set of operations
• A datatype is abstract iff it is completely described by its set of operations regardless of its implementation
• This means that it is possible to change the implementation of the datatype without changing its use
• The datatype is thus described by a set of procedures
• These operations are the only thing that a user of the abstraction can assume
Abstract data types:

- Dictionary
- Stack (LIFO)
- Queue (FIFO)
- Queue (double-ended)
- Priority queue (fetch highest-value object)

Dictionary

- Container of key-element pairs
- Required operations:
 - insert(k, e),
 - remove(k),
 - find(k),
 - isEmpty()
- May also support (when an order is provided):
 - closestKeyBefore(k),
 - closestElemAfter(k)
- Note: No duplicate keys

Some data structures for Dictionary ADT

- Unordered
 - Array
 - Sequence
- Ordered
 - Array
 - Sequence (Skip Lists)
 - Binary Search Tree (BST)
 - AVL
 - (2, 4) Trees
 - B-Trees
- Valued
 - Hash Tables
 - Extendible Hashing

Lists: Array

- Insert O(n)
- Delete O(n)
- Access i O(1)
- Insert to end O(1)
- Delete from end O(1)
- Search O(n)

Lists: Array

- Insert 8 after L[2]
- Delete last

Stack

- push(x) -- add to end (add to top)
- pop() -- fetch from end (top)
- O(1) in all reasonable cases 😊
- LIFO – Last In, First Out
Linear Lists

• Other operations on a linear list may include:
 – determine the number of elements
 – search the list
 – sort a list
 – combine two or more linear lists
 – split a linear list into two or more lists
 – make a copy of a list

Linked lists

head tail

Singly linked

head tail

Doubly linked

Linked lists: add/delete

size

Operations

• Array indexed from 0 to n – 1:

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(1 < k < n)</th>
<th>(k = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insert before or after the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

• Singly-linked list with head and tail pointers

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(1 < k < n)</th>
<th>(k = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insert before or after the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

1 under the assumption we have a pointer to the \(k \)th node, \(O(n) \) otherwise

Improving Run-Time Efficiency

• We can improve the run-time efficiency of a linked list by using a doubly-linked list:

Singly-linked list:

Doubly-linked list:

 – improvements at operations requiring access to the previous node
 – increases memory requirements...

Improving Efficiency

• Comparing the tables:

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(1 < k < n)</th>
<th>(k = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insert before or after the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(1 < k < n)</th>
<th>(k = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access/change the (k)th element</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insert before or after the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete the (k)th element</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

1 under the assumption we have a pointer to the \(k \)th node, \(O(n) \) otherwise
Introduction to linked lists:

- Consider the following struct definition

```
struct node {
    string word;
    int num;
    node *next;  // pointer for the next node
};
```

```
node *p = new node;
```

Introduction to linked lists: inserting a node

```c
node *p;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
```

Introduction to linked lists: adding a new node

• How can you add another node that is pointed by p->link?

  ```c
  node *p;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
  node *q;
  q = new node;
p->next = q;
  q->next = NULL;
  ```

Introduction to linked lists

• node *p, *q;
p = new node;
p->num = 5;
p->word = "Ali";
p->next = NULL;
q = new node;
q->num = 8;
q->word = "Veli";
p->next = q;
q->next = NULL;
Pointers

- \(p = \text{new node} ; \text{delete} \ p ; \)
- \(p = \text{new node}[20] ; \)
- \(p = \text{malloc} (\text{sizeof}(\text{node})) ; \text{free} \ p ; \)
- \(p = \text{malloc} (\text{sizeof}(\text{node}) \times 20) ; \)
- \((p+10) \rightarrow \text{next} = \text{NULL} ; /* 11\text{th elements} */ \)

Book-keeping

- malloc, new – “remember” what has been created free(p), delete (C/C++)
- When you need many small areas to be allocated, reserve a big chunk (array) and maintain your own set of free objects
- Elements of array of objects can be pointed by the pointer to an object.

Object

- Object = \text{new object_type} ;
- Equals to creating a new object with necessary size of allocated memory (delete can free it)

Some links

I want to test and understand...

- If you want to test pointers and linked list etc. data structures, but do not have pointers familiar (yet)
- Use arrays and indexes to array elements instead...

Replacing pointers with array index
Maintaining list of free objects

Multiple lists, single free list

Hack: allocate more arrays ...

Queue
(basic idea, does not contain all controls!)

Circular buffer

A circular buffer or ring buffer is a data structure that uses a single, fixed-size buffer as if it were connected end-to-end. This structure lends itself easily to buffering data streams.
Circular Queue

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

First = List[F]
Add_to_end(x) : { List[L=x ; L= (L+1) % MAX_SIZE] } \(\% = \text{modulus} \)
Last = List[(L-1+MAX_SIZE) % MAX_SIZE]
Full: return ((L+1)%MAX_SIZE == F)
Empty: F==L

Queue

- enqueue(x) - add to end
- dequeue() - fetch from beginning

FIFO – First In First Out

- O(1) in all reasonable cases 😊

Stack

- push(x) -- add to end (add to top)
- pop() -- fetch from end (top)

- O(1) in all reasonable cases 😊
- LIFO – Last In, First Out

Stack based languages

- Implement a postfix calculator
 - Reverse Polish notation
 - 5 4 3 * 2 + =⇒ 5 +((4*3)-2)

- Very simple to parse and interpret
- FORTH, Postscript are stack-based languages

Array based stack

- How to know how big a stack shall be?

```
  3   6   7   5
  3   6   7   5   2
```

- When full, dynamically allocate bigger table, and copy all previous values there
- O(n) ?

- When full, create 2x bigger table, copy previous n elements:
- After every \(2^k \) insertions, perform O(n) copy
- O(n) individul insertions +
- \(n/2 + n/4 + n/8 \ldots \) copy-ing
- Total: O(n) effort!
• when \(n = 32 \rightarrow 33 \) (copy 32, insert 1)
• delete: \(33 \rightarrow 32 \)
 – should you delete immediately?
 – Delete only when becomes less than 1/4th full

– Have to delete at least \(n/2 \) to decrease
– Have to add at least \(n \) to increase size
– Most operations, \(O(1) \) effort
– But few operations take \(O(n) \) to copy
– For any \(m \) operations, \(O(m) \) time

Lists and dictionary...
• How to maintain a dictionary using (linked) lists?
• Is \(k \) in \(D \)?
 – go through all elements \(d \) of \(D \), test if \(d == k \) \(O(n) \)
 – If sorted: \(d=\text{first}(D); \) while(\(d <= k \)) \(d=\text{next}(D); \)
 – on average \(<= n/2 \) tests …
• \(\text{Add}(k,D) \rightarrow \text{insert}(k,D) = O(1) \) or \(O(n) \) – test for uniqueness

Array based sorted list
• Is \(d \) in \(D \)?
• Binary search in \(D \)

Binary search / recursive
\[
\begin{array}{l}
\text{BinarySearch}(A[0..N-1], \text{value}, \text{low}, \text{high}) \\
\{ \\
\quad \text{if} (\text{high} < \text{low}) \\
\quad \quad \text{return} -1 // \text{not found} \\
\quad \text{mid} = \text{low} + (\text{high} - \text{low}) / 2) \quad // \text{Note: not (low + high) / 2 !!!} \\
\quad \text{if} (A[mid] > \text{value}) \\
\quad \quad \text{return} \text{BinarySearch}(A, \text{value}, \text{low}, \text{mid}-1) \\
\quad \text{else if} (A[mid] < \text{value}) \\
\quad \quad \text{return} \text{BinarySearch}(A, \text{value}, \text{mid}+1, \text{high}) \\
\quad \text{else} \\
\quad \quad \text{return} \text{mid} // \text{found} \\
\} \\
\end{array}
\]

Binary search – Iterative
\[
\begin{array}{l}
\text{BinarySearch}(A[0..N-1], \text{value}) \\
\{ \\
\quad \text{low} = 0; \ \text{high} = N - 1; \\
\quad \text{while} (\text{low} <= \text{high}) \\
\quad \quad \text{mid} = \text{low} + (\text{high} - \text{low}) / 2) \quad // \text{Note: not (low + high) / 2 !!!} \\
\quad \text{if} (A[mid] > \text{value}) \\
\quad \quad \text{high} = \text{mid} - 1 \\
\quad \text{else if} (A[mid] < \text{value}) \\
\quad \quad \text{low} = \text{mid} + 1 \\
\quad \text{else} \\
\quad \quad \text{return} \text{mid} // \text{found} \\
\} \\
\text{return} -1 // \text{not found} \\
\end{array}
\]

Work performed
• \(x <=> A[18] \) ? <
• \(x <=> A[9] \) ? >
• \(x <=> A[13] \) ? ==

\[
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \\
\end{array}
\]
\[
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 19 \\
\end{array}
\]
\[
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 13 \\
\end{array}
\]

• \(O(\log n) \)
Sorting

- given a list, arrange values so that
 \(L[1] \leq L[2] \leq ... \leq L[n] \)
- \(n \) elements \(\Rightarrow \) \(n! \) possible orderings
- One test \(L[i] \leq L[j] \) can divide \(n! \) to 2
 - Make a binary tree and calculate the depth
- \(\log(n!) = \Theta(n \log n) \)
- Hence, lower bound for sorting is \(\Theta(n \log n) \)
 - using comparisons...
 - (proved in previous lecture on blackboard)

Decision tree model

- \(n! \) orderings (leaves)
- Height of such tree?

- \(\log(n!) = \log(n) + \log(n-1) + ... + \log(1) \)
 a) \(\leq n \log(n) \)
 b) \(\geq \frac{n}{2} \log \left(\frac{n}{2} \right) = \frac{n}{2} \log n - \frac{n}{2} \)

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort \(n \) elements must have height \(\Omega(n \log n) \).

Proof. The tree must contain \(\geq n! \) leaves, since there are \(n! \) possible permutations. A height-\(h \) binary tree has \(\leq 2^h \) leaves. Thus, \(n! \leq 2^h \).

\[h \geq \log(n!) \geq \log((n/e)^n) \geq n \log(n) - n \log e = \Omega(n \log n) \]
The divide-and-conquer design paradigm

1. **Divide** the problem (instance) into subproblems.
2. **Conquer** the subproblems by solving them recursively.
3. **Combine** subproblem solutions.

Merge sort

Merge-Sort(A,p,r)
if p<r then q = (p+r)/2 // floor
Merge-Sort(A, p, q)
Merge-Sort(A, q+1,r)
Merge(A, p, q, r)

It was invented by John von Neumann in 1945.

Example

- Applying the merge sort algorithm:

```
A: 1 2 3 4 5 6 7 8
B: 9 10 11 12 13 14 15 16
```

```
L = new list; // empty
while( A not empty and B not empty )
  if A.first() <= B.first() then append( L, A.first() ); A = rest(A);
  else append( L, B.first() ); B = rest(B);
append( L, A); // all remaining elements of A
append( L, B ); // all remaining elements of B
return L
```

Wikipedia / viz.

Run-time Analysis of Merge Sort

- Thus, the time required to sort an array of size \(n > 1 \) is:
 - the time required to sort the first half,
 - the time required to sort the second half, and
 - the time required to merge the two lists

- That is:
 \[
 T(n) = \begin{cases}
 O(1) & n = 1 \\
 2T(\frac{n}{2}) + O(n) & n > 1
 \end{cases}
 \]
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$T(n) = \Theta(n \log n)$

Merge sort

- Worst case, average case, best case ...
 $\Theta(n \log n)$

- Common wisdom:
 - Requires additional space for merging (in case of arrays)

- Homework: develop in-place merge of two lists implemented in arrays / compare speed/

Quick sort

- Divide-and-conquer algorithm.
- Sorts “in place” (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Divide and conquer

Quick sort an n-element array:

1. **Divide:** Partition the array into two subarrays around a pivot x such that elements in lower subarray $< x$ elements in upper subarray
2. **Conquer:** Recursively sort the two subarrays.
3. **Combine:** Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

Running time $= O(n)$ for n elements.
Partitioning version 2

```
pivot = A[R];  //
i=L; j=R-1;
while (i<j )
  while ( A[i] < pivot ) i++ ;  // will stop at pivot latest
  while ( i<=j and A[j] >= pivot ) j-- ;
A[R]=A[i];
A[i]=pivot;
return i;
```

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[
T(n) = T(0) + T(n-1) + \Theta(n)
\]

\[
= \Theta(1) + T(n-1) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n)
\]

\[
= \Theta(n^2) \quad \text{(arithmetic series)}
\]

Best-case analysis

(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

\[
T(n) = 2T(n/2) + \Theta(n)
\]

\[
= \Theta(n \log n) \quad \text{(same as merge sort)}
\]

What if the split is always \(\frac{1}{10} : \frac{9}{10} \)?

\[
T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)
\]

What is the solution to this recurrence?

Analysis of “almost-best” case

\[
T(\frac{1}{10} n) \quad T(\frac{9}{10} n)
\]

\[
\log_{10}n \quad \Theta(1)
\]

\[
\Theta(\log n) \quad \text{Lucky!}
\]

\[
cn \leq T(n) \leq cn \log_{10}n + \Theta(n)
\]
More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

\[L(n) = 2U(n/2) + \Theta(n) \quad \text{lucky} \]
\[U(n) = L(n-1) + \Theta(n) \quad \text{unlucky} \]

Solving:

\[L(n) = 2L(n/2 - 1) + \Theta(n/2) + \Theta(n) \]
\[= 2L(n/2 - 1) + \Theta(n) \]
\[= \Theta(n \log n) \quad \text{Lucky!} \]

How can we make sure we are usually lucky?

Choice of pivot

• Select median of three ...

• Select random – opponent can not choose the winning strategy against you!

Randomized quicksort

IDEA: Partition around a random element.

• Running time is independent of the input order.
• No assumptions need to be made about the input distribution.
• No specific input elicits the worst-case behavior.
• The worst case is determined only by the output of a random-number generator.

Random pivot

Select pivot randomly from the region (blue) and swap with last position

Select pivot as a median of 3 [or more] random values from region

Apply non-recursive sort for array less than 10-20

Randomized quicksort analysis

Let \(T(n) \) = the random variable for the running time of randomized quicksort on an input of size \(n \), assuming random numbers are independent.

For \(k = 0, 1, \ldots, n-1 \), define the indicator random variable

\[X_k = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases} \]

\[E[X_k] = \Pr[X_k = 1] = 1/n, \text{ since all splits are equally likely, assuming elements are distinct.} \]

Analysis (continued)

\[T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \end{cases} \]

\[= \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \]
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

Take expectations of both sides.

Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + E[T(n-k-1)] + \Theta(n))
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + T(n-k-1) + \Theta(n))
\]

Independence of \(X_k\) from other random choices.

Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + E[T(n-k-1)] + \Theta(n))
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + T(n-k-1) + \Theta(n))
= \sum_{k=0}^{n-1} E[T(k)] + \sum_{k=0}^{n-1} E[T(n-k-1)] + \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n\).

Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + E[T(n-k-1)] + \Theta(n))
= \sum_{k=0}^{n-1} E[X_k] (E[T(k)] + T(n-k-1) + \Theta(n))
= \sum_{k=0}^{n-1} E[T(k)] + \sum_{k=0}^{n-1} E[T(n-k-1)] + \sum_{k=0}^{n-1} \Theta(n)
\]

Summations have identical terms.

Hairy recurrence

\[
E[T(n)] = 2 \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)
\]

(The \(k=0, 1\) terms can be absorbed in the \(\Theta(n)\).)

Prove: \(E[T(n)] \leq a n \log n\) for constant \(a > 0\).

- Choose \(a\) large enough so that \(a n \log n\) dominates \(E[T(n)]\) for sufficiently small \(n \geq 2\).

Use fact: \(\sum_{k=2}^{n-1} k \log k \leq 1/2 n^2 \log n - 1/2 n^2\) (exercise).
We can sort in $O(n \log n)$

- Is that the best we can do?
- Remember: using comparisons $<$, $>$, $<=$, $=>$ we can not do better than $O(n \log n)$

How fast can we sort n integers?

Sorting in linear time

Counting sort: No comparisons between elements.
- **Input:** $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$.
- **Output:** $B[1 \ldots n]$, sorted.
- **Auxiliary storage:** $C[1 \ldots k]$.

Counting sort

```
for i ← 1 to k
    do C[i] ← 0
for j ← 1 to n
    do C[A[j]] ← C[A[j]] + 1  // C[i] = |{key = i}|
for i ← 2 to k
    do C[i] ← C[i] + C[i-1]  // C[i] = |{key ≤ i}|
for j ← n downto 1
    do B[C[A[j]]] ← A[j]
    C[A[j]] ← C[A[j]] - 1
```
Loop 1

\[
\begin{align*}
A: & \quad 4 \ 1 \ 3 \ 4 \ 3 \\
B: & \quad \text{Empty}
\end{align*}
\]

for \(i \leftarrow 1 \) to \(k \)
\[
\text{do } C[i] \leftarrow 0
\]

Loop 2

\[
\begin{align*}
A: & \quad 4 \ 1 \ 3 \ 4 \ 3 \\
B: & \quad \text{Empty}
\end{align*}
\]

for \(j \leftarrow 1 \) to \(n \)
\[
\text{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \checkmark \quad C[i] = |\{\text{key} = i\}|
\]

Loop 3

\[
\begin{align*}
A: & \quad 4 \ 1 \ 3 \ 4 \ 3 \\
B: & \quad \text{Empty}
\end{align*}
\]

for \(i \leftarrow 2 \) to \(k \)
\[
\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \checkmark \quad C[i] = |\{\text{key} \leq i\}|
\]

Loop 4

\[
\begin{align*}
A: & \quad 4 \ 1 \ 3 \ 4 \ 3 \\
B: & \quad 3 \ 4 \ 4
\end{align*}
\]

for \(j \leftarrow n \) downto \(1 \)
\[
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]

Analysis

\[
\begin{align*}
\Theta(k) & \quad \{ \text{for } i \leftarrow 1 \text{ to } k \} \\
& \quad \text{do } C[i] \leftarrow 0
\end{align*}
\]

\[
\begin{align*}
\Theta(n) & \quad \{ \text{for } j \leftarrow 1 \text{ to } n \} \\
& \quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1
\end{align*}
\]

\[
\begin{align*}
\Theta(k) & \quad \{ \text{for } i \leftarrow 2 \text{ to } k \} \\
& \quad \text{do } C[i] \leftarrow C[i] + C[i-1]
\end{align*}
\]

\[
\begin{align*}
\Theta(n) & \quad \{ \text{for } j \leftarrow n \text{ downto } 1 \} \\
& \quad \text{do } B[C[A[j]]] \leftarrow A[j] \\
& \quad C[A[j]] \leftarrow C[A[j]] - 1
\end{align*}
\]

\[
\Theta(n+k)
\]

Running time

If \(k = O(n) \), then counting sort takes \(\Theta(n) \) time.

- But, sorting takes \(\Omega(n \ lg \ n) \) time!
- Where’s the fallacy?

Answer:

- \textit{Comparison sorting} takes \(\Omega(n \ lg \ n) \) time.
- Counting sort is not a \textit{comparison sort}.
- In fact, not a single comparison between elements occurs!
Radix sort

Radix-Sort(A,d)
1. for i = 1 to d
2. do use a stable sort to sort A on digit i

Correctness of radix sort

Induction on digit position
- Assume that the numbers are sorted by their low-order \(t - 1 \) digits.
- Sort on digit \(t \)
 - Two numbers that differ in digit \(t \) are correctly sorted.

Correctness of radix sort

Induction on digit position
- Assume that the numbers are sorted by their low-order \(t - 1 \) digits.
- Sort on digit \(t \)
 - Two numbers that differ in digit \(t \) are correctly sorted.
 - Two numbers equal in digit \(t \) are put in the same order as the input ⇒ correct order.
Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort n computer words of b bits each.
- Each word can be viewed as having b/r base-2^r digits.

Example: 32-bit word

| 8 | 8 | 8 | 8 |

$r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-2^8 digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-2^{16} digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to $k - 1$.

If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time.

Since there are b/r passes, we have

$$T(n, b) = \Theta\left(\frac{b}{r} \left(n + 2^r\right)\right).$$

Choose r to minimize $T(n, b)$:

- Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing r

$$T(n, b) = \Theta\left(\frac{b}{r} \left(n + 2^r\right)\right)$$

Minimize $T(n, b)$ by differentiating and setting to 0.

Or, just observe that we don’t want $2^r \gg n$, and there’s no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

- For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \lg 2000 \rceil = 11$ passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.
Radix sort using lists (stable)

1. \(a \)
2. \(b \)
3. \(c \)
4. \(d \)

Why not from left to right?

- Swap '0' with first '1'
- Idea 1: recursively sort first and second half
 - Exercise ?

Bitwise sort left to right

- Idea 2:
 - swap elements only if the prefixes match...
 - For all bits from most significant
 * advance when 0
 * when 1 -> look for next 0
 - if prefix matches, swap
 - otherwise keep advancing on 0's and look for next 1

Bitwise left to right sort

/* Historical sorting – was used in Univ. of Tartu using assembler... */
/* C implementation – Jaak Vilo, 1989 */

void bitwissort(SORTTYPE *ARRAY, int size)
{
 int i, tmp, nrbits;
 register SORTTYPE mask, curbit, group;
 nrbits = sizeof(SORTTYPE) * 8;
 curbit = 1 << (nrbits-1); /* set most significant bit 1 */
 mask = 0; /* mask of the already sorted area */
 for each bit */
 i = 0;
 new_mask:
 for (i = 0; i < size; i++) { /* Advance while bit == 0 */
 if (ARRAY[i] & curbit) { /* Save current prefix snapshot */
 array_end = i;
 /* End of first pass */
 if (i == array_end) { /* Realend of array */
 if (ARRAY[i] & mask) { /* Group goes new_mask */
 /* new prefix */
 if (ARRAY[i] & curbit) { /* Bit i is - need to swap with previous location of 1, A[j] = A[i] */
 tmp = ARRAY[i];
 ARRAY[i] = ARRAY[j];
 ARRAY[j] = tmp;
 i++;
 } else { /* Swap and increase i */
 i++;
 }
 }
 } else { /* Swap and increase i */
 tmp = ARRAY[i];
 ARRAY[i] = ARRAY[i-1];
 ARRAY[i-1] = tmp;
 }
 }
 mask = mask & curbit; /* area under mask is new sorted */
 curbit = curbit >> 1; /* next bit */
 }
}

Bitwise from left to right

0010000
0010001
0101000
0101001
1001000
1001001
1001010
1001011
1111000

- Swap '0' with first '1'

Jaak Vilo, Univ. of Tartu
Bucket sort

- Assume uniform distribution
- Allocate $O(n)$ buckets
- Assign each value to pre-assigned bucket

http://sortbenchmark.org/

- Minutesort – max amount sorted in 1 minute
 – 116GB in 58.7 sec (Jim Wyllie, IBM Research)
 – 40-node 80-Itanium cluster, SAN array of 2,520 disks
- 2009, 500 GB Hadoop 1406 nodes x (2 Quadcore Xeons, 8 GB memory, 4 SATA)
 Owen O’Malley and Arun Murthy Yahoo Inc.
- Performance / Price Sort and PennySort

Sort Benchmark

- http://sortbenchmark.org/
 - Sort Benchmark Home Page
 - We have a new benchmark called new GraySort, new in memory of the father of the sort benchmarks, Jim Gray. It replaces TeraByteSort which is now retired.
 - The submission deadline is new 15 April 2009. new
 - New rules for GraySort:
 - The input file size is now minimum ~100TB or 1T records. Entries with larger input sizes also qualify.
 - The winner will have the fastest SortedRecs/Min.
 - We now provide a new input generator that works in parallel and generates binary data. See below.
 - For the Daytona category, we have two new requirements. (1) The sort must run continuously/repeatedly for a minimum 1 hour (This is a minimum reliability requirement). (2) The system cannot overwrite the input file.
Order statistics

- Minimum – the smallest value
- Maximum – the largest value
- In general i’th value.
- Find the median of the values in the array
- Median in sorted array A:
 - n is odd $A[(n+1)/2]$
 - n is even – $A[\lfloor (n+1)/2 \rfloor]$ or $A\lfloor (n+1)/2 \rfloor$

Min and max together

- compare every two elements $A[i], A[i+1]$
- Compare larger against current max
- Smaller against current min
- $3n/2$

Selection in expected $O(n)$

Randomised-select(A, p, r, i)
if $p=r$ then return $A[p]$
q = Randomised-Partition(A, p, r)
k = $q - p + 1$ // nr of elements in subarr
if $i \leq k$
 then return Randomised-Partition(A, p, q, i)
else return Randomised-Partition(A, $q+1$, r, $i-k$)

Conclusion

- Sorting in general $O(n \log n)$
- Quicksort is rather good
- Linear time sorting is achievable when one does not assume only direct comparisons
- Find i’th value – expected $O(n)$
- Find i’th value: worst case $O(n)$ – see CLRS
Ok...

- lists – a versatile data structure for various purposes
- Sorting – a typical algorithm (many ways)
- Which sorting methods for array/list?
- Array: most of the important (e.g. update) tasks seem to be O(n), which is bad

Can we search faster in linked lists?

- Why sort linked lists if search anyway O(n)?
- Linked lists:
 - what is the “mid-point” of any sublist?
 - Therefore, binary search can not be used...
 - Or can it?

Skip List

A skip list, introduced by Pagh (Pagh 1999), is a randomized balanced tree data structure organized as a sequence of increasingly sparse linked lists. Level 0 of a skip list is a linked list of all nodes in increasing order by key. For each i greater than 0, each node is level i – 1 appears in level i independently with some fixed probability p. In a double-linked skip list, each node stores a predecessor pointer and a successor pointer for each list in which it appears, for an average of ϕ_p pointers per node. The lists at the higher level are in “reverse order” that allow the sequence of nodes to be traversed quickly. Searching for a node with a particular key involves searching first in the highest level, and repeatedly dropping down a level whenever it becomes clear that the node is not in the current level. Considering the search path in reverse shows that no more than ϕ_p nodes are searched on average per level, giving an average search time of $O\left(\frac{1}{1-p}\right)$ with a node at level 0. Skip lists have been extensively analyzed (Pagh 1999; Pagh et al. 1996; Demaine 1997; Kienzle and Friediger 1994; Brodnik et al. 1995), and because they require no global synchronizing operations are particularly useful in parallel systems (Karakus et al. 1996; Guha and Miserendino 1997).

![Skip List Diagram](image)

Skip List

typedef struct nodeStructure *node;
typedef struct nodeStructure{
 keyType key;
 valueType value;
 node forward[1]; /* variable sized array of forward pointers */
};

Skip Lists

![Skip Lists](image)
Outline and Reading

- What is a skip list ($\S\ 3.5$)
- Operations
 - Search ($\S\ 3.5.1$)
 - Insertion ($\S\ 3.5.2$)
 - Deletion ($\S\ 3.5.2$)
- Implementation
- Analysis ($\S\ 3.5.3$)
 - Space usage
 - Search and update times

Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y = \text{keyAfter}(p)$
 - $x = y$ return $\text{elementAfter}(p)$
 - $x < y$ we "scan forward"
 - $x > y$ we "drop down"
 - If we try to drop down past the bottom list, return NO_SEARCH_KEY

Example: search for 78

Insertion

- To insert an item (x, e) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
 - If $i > k$, we add to the skip list new lists $S_{p_0}, S_{p_1}, \ldots, S_{p_i}$ each containing only the two special keys
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with largest key less than x in each list $S_{p_0}, S_{p_1}, \ldots, S_{p_i}$
 - For $j = 0, 1, \ldots, i$, we insert item (x, e) into list S_j after position p_j

Example: insert key 15, with $i = 2$

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type

  ```
  b = \text{random}()
  if b = 0
  do A
  else if b = 1
  do B
  ```

- Its running time depends on the outcomes of the coin tosses

Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_0 is in list S_j
 - We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i
 - We remove all but one list containing only the two special keys

Example: remove key 34

Outline and Reading

- What is a skip list ($\S\ 3.5$)
- Operations
 - Search ($\S\ 3.5.1$)
 - Insertion ($\S\ 3.5.2$)
 - Deletion ($\S\ 3.5.2$)
- Implementation
- Analysis ($\S\ 3.5.3$)
 - Space usage
 - Search and update times

Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y = \text{keyAfter}(p)$
 - $x = y$ return $\text{elementAfter}(p)$
 - $x < y$ we "scan forward"
 - $x > y$ we "drop down"
 - If we try to drop down past the bottom list, return NO_SEARCH_KEY

Example: search for 78

Insertion

- To insert an item (x, e) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
 - If $i > k$, we add to the skip list new lists $S_{p_0}, S_{p_1}, \ldots, S_{p_i}$ each containing only the two special keys
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with largest key less than x in each list $S_{p_0}, S_{p_1}, \ldots, S_{p_i}$
 - For $j = 0, 1, \ldots, i$, we insert item (x, e) into list S_j after position p_j

Example: insert key 15, with $i = 2$

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type

  ```
  b = \text{random}()
  if b = 0
  do A
  else if b = 1
  do B
  ```

- Its running time depends on the outcomes of the coin tosses

Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_0 is in list S_j
 - We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i
 - We remove all but one list containing only the two special keys

Example: remove key 34
Implementation

- We can implement a skip list with quad-nodes.
- A quad-node stores:
 - item
 - link to the node before
 - link to the node after
 - link to the node above
 - link to the node below
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is 1/2^i.
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np.
- Consider a skip list with n items:
 - By Fact 1, we insert an item in list L_i with probability 1/2^i.
 - By Fact 2, the expected size of list L_i is n/2^i.
- The expected number of nodes used by the skip list is

\[
\sum_{i=0}^{\log n} \frac{n}{2^i} = 2n
\]

Thus, the expected space usage of a skip list with n items is O(n).

Height

- The running time of the search an insertion algorithms is affected by the height h of the skip list.
- We show that with high probability, a skip list with n items has height (log n).
- We use the following additional probabilistic fact:
 - Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.
- Consider a skip list with n items:
 - By Fact 1, we insert an item in list L_i with probability 1/2^i.
 - By Fact 3, the probability that list L_i has at least one item is at most n/2^i.
 - By picking i = 3log n, we have that the probability that L_{3log n} has at least one item is at most n/2^{3log n} = 1/2.
 - Thus, a skip list with n items has height at most log n with probability at least 1 - 1/2.

Search and Update Times

- The search time in a skip list is proportional to:
 - the number of drop-down steps, plus
 - the number of scan-forward steps.
- The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability p.
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2.
- When we scan forward in a list, the destination key does not belong to a higher list.
 - A scan-forward step is associated with a former coin toss that gave tails.
- By Fact 4, in each list the expected number of scan-forward steps is 2.
- Thus, the expected number of scan-forward steps is O(log n).
- We conclude that a search in a skip list takes O(log n) expected time.
- The analysis of insertion and deletion gives similar results.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n items:
 - The expected space used is \(O(n) \).
 - The expected search, insertion and deletion time is \(O(\log n) \).
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.
Conclusions

- Abstract data types hide implementations
- Important is the functionality of the ADT
- Data structures and algorithms determine the speed of the operations on data
- Linear data structures provide good versatility
- Sorting – a most typical need/algorithm
- Sorting in $O(n \log n)$ Merge Sort, Quicksort
- Solving Recurrences – means to analyse
- Skip lists – $\log n$ randomised data structure