Data Mining MTAT.03.183
(4AP = 6EAP)
Introduction

Jaak Vilo
2009 Fall

Lecturer

• 1986-1991 U Tartu
• 1991-1999 U Helsinki (sequence pattern discovery)
• 1999-2002 EMBL-EBI, UK (bioinformatics)
• 2002- EGeen -> Quretec (Biobank and Data Mgmt)
• U Tartu, professor (Bioinformatics) 2007
 – EXCS – Center of Excellence
 – STACC – Software Technologies and Applications
 – Competence Center (Tarkvara TAK)
 – research projects

Students

• >80 registered
• Estonian vs Foreign
• MSc 1st y / 2nd y ?
• BSc , PhD ?
• Non IT/CS ?
• Why this class? Expectations? (ESSCaSS’08,09...)

Course

• List: ati.dm@lists.ut.ee
• Lectures: 10:15, Liivi 2-403
• Seminars: 12:15, Liivi 2-403
• Prof. Jaak Vilo vilo@ut.ee
 http://www.quicktopic.com/43/H/eWqhydvFpUN
• Other? Skype ?

Seminars

• Three types:
 1. Homework: presentations/discussions
 2. Guest lectures, visitors
 3. Practical labs/training (no concrete plans yet)

• Participation is obligatory (>75%)

Grading requirements

• Participation! >75% of seminars
• Homeworks (30%) (min 50% of assignments)
• Projects/essays (30%)
• Exam (40%)
• Total: 100% + thresholds
• All deadlines are stringent.
Homework

- **Tasks/assignments**
 - 5 tasks/week + possibly bonuses
 - About in every 2 weeks (irregular)
- **Report/mark all completed tasks**
 - written reports on tasks
 - ready to present fully to class
 - there will be some uploading system
 - and/or paper sheets in class
- Deadline always before class start (Thu, 12:15)

4AP = 6EAP

- 4 weeks (4x40h=160h) of intensive work
 - assuming basic knowledge of BSc material
- 1/3 in class
- 1/3 reading, homeworks
- 1/3 projects, writing, ...

What is Data Mining?

- **Data -> Information, Knowledge, Insight**
 - new, interesting, nontrivial, useful ...
- **Data size -> Algorithmic challenge**
- **Predictive, useful -> theoretical and economical challenge**
- **Why? By practical demand and need...**

Textbooks

- **Han, Kamber:** Data Mining: Concepts and Techniques, Second Edition (The Morgan Kaufmann Series in Data Management Systems) [Google Books](#) [Wiley](#)
- Chakrabarti et al. Data Mining: know it all. Morgan Kaufmann 2008 [Elsevier](#) [Amazon](#) [Google](#)
- Bramer: Principles of Data Mining (Springer, 2007) [Amazon](#) [Springer](#) [Google](#)
- Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. (Springer 2009) [Tibshirani](#) [Amazon](#)
What’s it all about?

- Statistics
- Patterns in data
- Learning
- Classification
- Knowledge / Information /
- Algorithms
- Prediction

Sources of data (growth)

- devices
- net/web
- logs
- transactional db
- consumer
- multimedia(!)
- science
- cheaper storage, compute power
- ...

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
 - We are drowning in data, but starving for knowledge!
 - "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Evolution of Sciences

- Before 1600: empirical science
- 1600-1935: theoretical science
 - Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding.
- 1950s-1990s: computational science
 - Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 - Computational science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.
- 1990 now: data science
 - The flood of data from new scientific instruments and simulations
 - The ability to economically store and manage petabytes of data online
 - The Internet and computing Grid that makes all these archives universally accessible
 - Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OODB, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s:
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems
Examples from Machine Learning

- 1950’s – checkers (Arthur Samuels 1959)
- 1960’s – NN – perceptron and it’s limitations
- 1970’s – expert systems, decision trees (ID3), ...
- 1980’s – Neural Networks, PAC learning, ...
- 1990’s – Data mining, ILP, Ensembles
- 2000’ – SVM, Kernels, Graphical Models, ...

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting non-trivial, implicit, previously unknown and potentially useful patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything “data mining”?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

- This is a view from typical database systems and data warehousing communities
- Data mining plays an essential role in the knowledge discovery process

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base
Collaborative filtering

- Amazon, Netflicks

- Collaborative filtering systems usually take two steps:
 - Look for users who share the same rating patterns with the active user (the user whom the prediction is for).
 - Use the ratings from those like-minded users found in step 1 to calculate a prediction for the active user.

Netflix prize

http://www.netflixprize.com/

- 18K movies
- 480K customers
- ~ 100M ratings
- Test on 2.8M withheld ratings

Social network

- Graph of connections
- Social network mining

Web

- Interlinked web sites and pages
- Directed Graph of links
- Information Retrieval, PageRank
- Web mining

Web usage mining

- Software and web usage logs
- Typical use patterns
- User groups, their preferences, behavior
- Can you predict their goals and help to achieve them?
 - distributed online transactions, queries, ... (Google, etc)
Biomedical data mining

- Analyse:
 - DNA,
 - Genotype information
 - disease histories
 - find associated genes
 - predict and classify diseases and outcomes
 - discover “how biology works”
 - ...

Combinatorial Data Mining Algorithms
(research seminar, Sven Laur, PhD)

Basics ideas and techniques
- How to find frequent sets in databases
- How to find frequent motifs in sequences

Algorithmic problems
- Depth-first vs breadth first search
- How to avoid combinatorial explosion

Interpretation of results
- Which patterns are important enough?

Combinatorial Data Mining Algorithms
(research seminar, Sven Laur, PhD)

Other important aspects
- How to handle noisy data
- Random sampling vs linear scan

Applications and extensions
- Association rules in practice
- Log analysis. Episode rules and usability
- Graph mining and biochemistry

Combinatorial Data Mining Algorithms
(research seminar, Sven Laur, PhD)

Administrative details

- Combinatorial Data Mining Algorithms
- Gives 3 EAP (2 old AP)
- Takes place on Wednesdays in L122
- First seminar is on 16th of September
- Each participant has to give a presentation
- Project work is combined with DM course

Research at U Tartu

- STACC – Software Technologies and Applications Competence Center
 - companies and universities
 - Skype, Regio, Delfi, Qurtec, ...
 - Research problems, topics, scholarships

Research topics

- Publications => Projects, funding
- Relevant to STACC, companies
- Can lead to job offers 😊
UT CS department

• Job offers:

• courses.cs.ut.ee - web site development
 – UT CS department courses web development
 – Other sysadmin and Department development tasks
 – ...

Jaak Vilo and other authors
UT Data Mining 2009