Advanced Algorithmics

Clustering

Jaak Vilo
2009 Spring

Topics

• What is clustering
• Hierarchical clustering
• K-means
 + K-medoids
• SOM
• Fuzzy
• EM
• ...

Unsupervised vs. Supervised

Find groups inherent to data (clustering)

Find a “classifier” for known classes

Clustering

• An old problem
• Many methods

• No single best “suits all needs” method

Vehicle Example

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Top speed [km/h]</th>
<th>Colour</th>
<th>Air resistance</th>
<th>Weight [Kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>220</td>
<td>red</td>
<td>0.30</td>
<td>1300</td>
</tr>
<tr>
<td>V2</td>
<td>230</td>
<td>black</td>
<td>0.32</td>
<td>1400</td>
</tr>
<tr>
<td>V3</td>
<td>260</td>
<td>red</td>
<td>0.29</td>
<td>1500</td>
</tr>
<tr>
<td>V4</td>
<td>140</td>
<td>gray</td>
<td>0.35</td>
<td>800</td>
</tr>
<tr>
<td>V5</td>
<td>155</td>
<td>blue</td>
<td>0.33</td>
<td>950</td>
</tr>
<tr>
<td>V6</td>
<td>130</td>
<td>white</td>
<td>0.40</td>
<td>600</td>
</tr>
<tr>
<td>V7</td>
<td>100</td>
<td>black</td>
<td>0.50</td>
<td>3500</td>
</tr>
<tr>
<td>V8</td>
<td>105</td>
<td>red</td>
<td>0.60</td>
<td>2500</td>
</tr>
<tr>
<td>V9</td>
<td>110</td>
<td>gray</td>
<td>0.55</td>
<td>3500</td>
</tr>
</tbody>
</table>

Vehicle Clusters

- Sports cars
- Medium market cars
- Lorries
Terminology

Motivation: Why Clustering?

Problem: Identify (a small number of) groups of similar objects in a given (large) set of objects.

Goals:
- Find representatives for homogeneous groups → Data Compression
- Find “natural” clusters and describe their properties → “natural” Data Types
- Find suitable and useful grouping → “useful” Data Classes
- Find unusual data object → Outlier Detection

Clustering – it’s “easy” (for humans)

- Edge-Detection (advantage to smooth contours)
- Texture clustering
Distance measures:

- Which two profiles are similar to each other?
- Euclidean, Manhattan etc.
- Correlation, angle, etc.
- Rank correlation
- Time warping

Clustering cont...

Distance measures

- How to formally describe which objects are “close” to each other, and which are not
- More than one way to define distances.
- Distance is a metric, if
 - \(d(X,X) = 0 \)
 - \(d(X,Y) = d(Y,X) \geq 0 \)
 - \(d(A,B) \leq d(A,C) + d(C,B) \)

Some standard distance measures

- Euclidean distance
 \[
 d(f,g) = \sqrt{\sum_{i=1}^{c} (f_i - g_i)^2}
 \]
- Euclidean squared
 \[
 d(f,g) = \sum_{i=1}^{c} (f_i - g_i)^2
 \]
- Manhattan (city-block)
 \[
 d(f,g) = \sum_{i=1}^{c} |f_i - g_i|
 \]
- Average distance
 \[
 d(f,g) = \frac{1}{c} \sum_{i=1}^{c} (f_i - g_i)^2
 \]

Pearson correlation

\[
 d(f,g) = 1 - \frac{\sum_{i=1}^{c} (f_i - \bar{f})(g_i - \bar{g})}{\sqrt{\sum_{i=1}^{c} (f_i - \bar{f})^2 \sum_{i=1}^{c} (g_i - \bar{g})^2}}
\]

If means of each column are 0, then it becomes:

\[
 d(f,g) = 1 - \frac{\sum_{i=1}^{c} f_i g_i}{\sqrt{\sum_{i=1}^{c} f_i^2 \sum_{i=1}^{c} g_i^2}} = 1 - \cos \Theta
\]

Chord distance

\[
 d(f,g) = \sqrt{2(1 - \sum_{i=1}^{c} f_i g_i \sqrt{\sum_{i=1}^{c} f_i^2 \sum_{i=1}^{c} g_i^2})}
\]

Legendre & Legendre: Numerical Ecology 2nd ed.
Rank correlation

\[d(f, g) = 1 - \frac{6 \sum_{c=1}^{c} (\text{rank}_f - \text{rank}_g)}{c(c^2 - 1)} \]

Rank - smallest has rank 1, next 2, etc.
Equal values have rank that is average of the ranks

f = 3 17 12 12 8
\[\text{rank} = 1 \ 5 \ 3.5 \ 3.5 \ 2 \]

Hierarchical clustering

1. All against all distance matrix
2. Linkage strategy – identify closest clusters and merge

Performance:
\[O(dn^2) \]

Hierarchical clustering

- Calculate all pairwise distances
 - and assign each object into a singleton cluster

- While more than 1 cluster
 - select smallest distance
 - merge the two clusters
 - update the changed distances after merger

Update distances

- Merge Ca,Cb into C
- Re-calculate all distances D(Ci,C)
- D(Ci,C) = min{D(Ci, Ca), D(Ci, Cb)}

Merge Ca, Cb into C

- D(Ci, C) = min{D(Ci, Ca), D(Ci, Cb)}
 - Single link; Minimal distance

- D(Ci, C) = max{D(Ci, Ca), D(Ci, Cb)}
 - Complete link; Maximum distance

- D(Ci, C) = average{D(Ci, Ca), D(Ci, Cb)}
 - UPGMA – Unweighted Pair Group Method Average

Hierarchical clustering

Keep joining together two closest clusters by using the:
- Minimum distance => Single linkage
- Maximum distance => Complete linkage
- Average distance => Average linkage (UPGMA, WPGMA)

Cluster matrices:

Cluster sequences:
Running time for hierarchical clustering

Time

- $O(n^2)$ distances
- $n-1$ times merge
 - select smallest distance
 - update all distances to new cluster
Design any heat-map coloring scheme

Heat map color schema design

Limits of standard clustering

- Hierarchical clustering is (very) good for visualization (first impression) and browsing
- Speed for modern data sets remains relatively slow (minutes or even hours)
- ArrayExpress database needs some faster analytical tools
- Hard to predict number of clusters
 (=>Unsupervised)

6200 genes, 80 exp.

Monitor size 1600x1200 pixels

Laptop: 800x600
Hierarchical clustering is applied in gene expression data analysis, number of genes can be 20000+

Hierarchical clustering:
Each subtree is a cluster.
Hierarchy is built by iteratively joining two most similar clusters into a larger one.

Fast Hierarchical Clustering
Avoid calculating all O(n^2) distances:

- Estimate distances
- Use pivots
- Find close objects
- Cluster with partial information

Euclidean distances

Average linkage hierarchical clustering

Distances from one pivot

Distances from two pivots

Distances from two pivots
Distances from two pivots

Here we use Chebyshev distance (maximum of differences)

By triangle inequality we get:

Euclidean distance in original plot cannot be smaller than Chebyshev distance here

\[\text{Chebyshev distance} \]

Epsilon Grid Order (EGO)

1) Datapoints sorted according to EGO on
2) Each point is compared with the later points until one hypercube away

Major Clustering Approaches

- **Partitioning algorithms/Representative-based/Prototype-based Clustering Algorithm:** Construct various partitions and then evaluate them by some criterion or fitness function → kmeans
- **Hierarchical algorithms:** Create a hierarchical decomposition of the set of data (or objects) using some criterion
- **Density-based:** based on connectivity and density functions → OBSCAN, DENCLUE,...
- **Grid-based:** based on a multiple-level granularity structure
- **Model-based:** A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other → EM

Representative-Based Clustering

- Aims at finding a set of objects (called representatives) in the dataset that best represent the objects in the dataset. Each representative corresponds to a cluster.
- The remaining objects in the dataset are then clustered around these representatives by assigning objects to the cluster of the closest representative.

Remarks:

1. The popular k-medoid algorithm, also called PAM, is a representative-based clustering algorithm; K-means also shares the characteristics of representative-based clustering, except that the representatives used by k-means not necessarily have to belong to the dataset.
2. If the representatives do not need to belong to the dataset we call the algorithms prototype-based clustering. K-means is a prototype-based clustering algorithm

K-means, K-medoids, ...

- Partition the data points into K groups
- Each group is centered around it’s mean or medoid
- Mean is an “abstract point”
- Medoid: most central object
K-means

1. Guess K centres
2. Assign obj to clusters
3. Move C to gravity centres

Representative-Based Clustering ... (Continued)

Representative-Based Supervised Clustering ... (continued)

Objective of RSC: Find a subset O_X of O such that the clustering X obtained by using the objects in O_X as representatives minimizes $q(X)$; q is an objective/fitness function.

The K-Means Clustering Method

- Given k, the *k-means* algorithm is implemented in 4 steps:
 1. Partition objects into k nonempty subsets
 2. Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 3. Assign each object to the cluster with the nearest seed point.
 4. Go back to Step 2, stop when no more new assignment.
Comments on K-Means

Strength:
- Relatively efficient: $O(\tau(n^k))$, where n is # objects, k is # clusters, and τ is # iterations, d is the # dimensions. Usually, $d, k, \tau \ll n$; in this case, K-Mean's runtime is $O(n)$.
- Storage only $O(n)$—in contrast to other representative-based algorithms, only computes distances between centroids and objects in the dataset, and not between objects in the dataset; therefore, the distance matrix does not need to be stored.
- Easy to use; well studied; we know what to expect

Weakness:
- Applicable only when mean is defined ‒ what about categorical data?
- Need to specify k, the number of clusters, in advance
- Sensitive to outliers
- Not suitable to discover clusters with non-convex shapes
- Sensitive to initialization; bad initialization might lead to bad results.

Complication: Empty Clusters

We assume that the k-means initialization assigns the green, blue, and brown points to a single cluster; after centroids are computed and objects are reassigned, it can easily be seen that the brown cluster becomes empty.

Convex Shape Cluster

- Convex Shape: if we take two points belonging to a cluster then all the points on a direct line connecting these two points must also in the cluster.
- Shape of K-means/K-mediods clusters are convex polygons: Convex Shape.
- Shapes of clusters of a representative-based clustering algorithm can be computed as a Voronoi diagram for the set of cluster representatives.
- Voronoi cells are always convex, but there are convex shapes that a different from those of Voronoi cells.

Voronoi Diagram for a Representative-based Clustering

Each cell contains one representatives, and every location within the cell is closer to that sample than to any other sample. A Voronoi diagram divides the space into such cells. Voronoi cells define cluster boundary!

K-means clustering output
K-means

- Finds local optimum
 - vary many times with random start
 - make an “educated guess” to start with
 - e.g. sample the data, perform hierarchical clustering, select K “centers”.

K-medoids

- Choose the cluster center to be one of the existing objects.
- **Why?**
 - If more complex data or distance measure the “Real” center could not be found easily
 - What is the mean of categorical data?
 - yellow, red, pink?
 - Instead of trying to “invent” – use one of the existing objects, whatever the distance measure

Self Organising Maps (SOM)

A $M \times N$ matrix of neurons, each representing “a cluster”
Object X is put to W_i, to which it is most similar.
W_i and its near surrounding is changed to resemble X more
Train, train, train...

Problem - there is no clear objective function to map D-dimensional data to 2 dim.

Motivation: The Problem Statement

- The problem is how to find out semantics relationship among lots of information without manual labor
- How do I know, where to put my new data in, if I know nothing about information’s topology?
- When I have a topic, how can I get all the information about it, if I don’t know the place to search them?

Motivation: The Idea

- Computer know automatically information classification and put them together
- Input Pattern 1
- Input Pattern 2
- Input Pattern 3

Motivation: The Idea

- Text objects must be automatically produced with semantics relationships
- Semantics Map
 - Topic 1
 - Topic 2
 - Topic 3
Self-Organizing Maps: Origins

Self-Organizing Maps

- Ideas first introduced by C. von der Malsburg (1973), developed and refined by T. Kohonen (1982)
- Neural network algorithm using unsupervised competitive learning
- Primarily used for organization and visualization of complex data
- Biological basis: ‘brain maps’

Teuvo Kohonen

Self-Organizing Maps

- SOM - Architecture
 - Lattice of neurons (‘nodes’) accepts and responds to set of input signals
 - Responses compared; ‘winning’ neuron selected from lattice
 - Selected neuron activated together with ‘neighbourhood’ neurons
 - Adaptive process changes weights to more closely resemble inputs

2d array of neurons
Weighted synapses
Set of input signals

Self-Organizing Maps

- SOM – Result Example
 - Classifying World Poverty
 - Helsinki University of Technology

Poverty map based on 39 indicators from World Bank statistics (1992)

Initialisation

(i) Randomly initialise the weight vectors \(w_j \) for all nodes \(j \)

(ii) Choose an input vector \(x \) from the training set

In computer texts are shown as a frequency distribution of one word.

A Text Example:

Self-organizing maps (SOMs) are a data visualization technique invented by Professor Teuvo Kohonen which reduce the dimensions of data through the use of self-organizing neural networks. The problem that data visualization attempts to solve is that humans simply cannot visualize high dimensional data as is so techniques are needed to help us understand this high dimensional data.

Input vector

(ii) Choose an input vector \(x \) from the training set

In computer texts are shown as a frequency distribution of one word.

Finding a Winner

(iii) Find the best-matching neuron \(w(x) \), usually the neuron whose weight vector has smallest Euclidean distance from the input vector \(x \)

The winning node is that which is in some sense ‘closest’ to the input vector

‘Euclidean distance’ is the straight line distance between the data points, if they were plotted on a (multi-dimensional) graph

Euclidean distance between two vectors \(a \) and \(b \), \(a = (a_1, a_2, ..., a_n) \), \(b = (b_1, b_2, ..., b_n) \), is calculated as:

\[
d_{a,b} = \sqrt{\sum_{i}(a_i - b_i)^2}
\]
Weight Update

SOM Weight Update Equation

\[w_j(t + 1) = w_j(t) + \mu(t) \lambda_{w,t}(j,t) [x - w_j(t)] \]

"The weights of every node are updated at each cycle by adding
Current learning rate \times Degree of neighbourhood with respect to winner \times
Difference between current weights and input vector
to the current weights"

- L. rate
- No. of cycles

Example of \(\mu(t) \)
Example of \(\lambda_{w,t}(j,t) \)

Clustering etc. algorithms

- Hierarchical clustering methods + visualisation
- K-means, Self Organising Maps (SOM)
- SOTA trees (Self Organising Maps + Tree)
- Fuzzy, EM (object can belong to several clusters)
- Graph theory (cliques, strongly connected components)
- Similarity search: X -> Y s.t. d(X,Y) < 0.3
- Model based (rediscover distributions)
- Planar embeddings, Multidimensional scaling
- Principal Component Analysis
- Correspondence analysis
- Independent Component Analysis

Similarity searches

Query: "cyc1" (cyc1, activator for cyc1, repressor for cyc1)
=> 3 genes + 10 most similar ones for each
= 3 "clusters"

Expand a tight cluster by other most similar genes:
EM — Expectation Maximization

- EM — A popular iterative refinement algorithm
- An extension to k-means
 - Assign each object to a cluster according to a weight (prob. distribution)
 - New means/covariances are computed based on weighted measures
- General idea
 - Starts with an initial estimate of the parameter vector
 - Iteratively rescores the patterns against the mixture density produced by the parameter vector
 - The rescored patterns are used to update the parameter updates
 - Patterns belonging to the same cluster, if they are placed by their scores in a particular component
- Algorithm converges fast but may not be in global optima

The EM (Expectation Maximization) Algorithm

- Initially, randomly assign k cluster centers
- Iteratively refine the clusters based on two steps
 - Expectation step: assign each data point X_i to cluster C_k with the following
 $$P(X_i \in C_k) = \frac{p(C_k)p(X_i|C_k)}{p(X_i)}$$
 - Maximization step:
 - Estimation of model parameters
 $$m_k = \frac{1}{N} \sum_{i=1}^{N} \frac{X_i p(X_i \in C_k)}{\sum_j p(X_i \in C_j)}$$

Other Clustering Methods

- PCA (Principal Component Analysis)
 - Also called SVD (Singular Value Decomposition)
 - Reduces dimensionality of gene expression space
 - Finds best view that helps separate data into groups
- Supervised Methods
 - SVM (Support Vector Machine)
 - Previous knowledge of which genes expected to cluster is used for training
 - Binary classifier uses 'feature space' and 'kernel function' to define an optimal hyperplane
 - Also used for classification of samples - 'expression fingerprinting' for disease classification