Advanced Algorithmics (4AP)
Sorting - revisited

Jaak Vilo
2009 Spring

Sorting

• given a list, arrange values so that
• n elements => n! possible orderings
• One test L[i] <= L[j] can divide n! to 2
 – Make a binary tree and calculate the depth
• log(n!) = O(n log n)
• Hence, lower bound for sorting is O(n log n)
 – using comparisons...
 – (proved using decision tree model)
Decision-tree example

Sort \(\langle a_1, a_2, a_3 \rangle \)
= \(\langle 9, 4, 6 \rangle \):

```
   1:2
   2:3
   1:3

1:3  123
213  312
132  321

4 \leq 6 \leq 9
```

Each leaf contains a permutation \(\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle \) to indicate that the ordering \(a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)} \) has been established.

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort \(n \) elements must have height \(\Omega(n \lg n) \).

Proof. The tree must contain \(\geq n! \) leaves, since there are \(n! \) possible permutations. A height-\(h \) binary tree has \(\leq 2^h \) leaves. Thus, \(n! \leq 2^h \).

\[
\therefore \quad h \geq \lg(n!) \geq \lg \left((n/e)^n\right) = n \lg n - n \lg e = \Omega(n \lg n).
\]
• $\log(n!)=\log(n)+\log(n-1)+...+\log(1)$

 a) $\leq n\log(n)$

 b) $\geq \frac{n}{2} \log \left(\frac{n}{2}\right) = \frac{n}{2} \log n - \frac{n}{2}$

Merge sort

Merge-Sort(A,p,r)
if p<r
then q = (p+r)/2 // floor

 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1,r)
 Merge(A, p, q, r)

It was invented by John von Neumann in 1945.
Run-time Analysis of Merge Sort

• Thus, the time required to sort an array of size $n > 1$ is:
 – the time required to sort the first half,
 – the time required to sort the second half, and
 – the time required to merge the two lists

• That is:
 \[T(n) = \begin{cases}
 \Theta(1) & n = 1 \\
 2T\left(\frac{n}{2}\right) + \Theta(n) & n > 1
 \end{cases} \]

• $O(n \log n)$ worst case

Divide and conquer

Quick sort an n-element array:

1. **Divide:** Partition the array into two subarrays around a **pivot** x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

 \[\leq x \quad x \quad \geq x \]

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Trivial.

 Key: Linear-time partitioning subroutine.
Pseudocode for quicksort

QUICKSORT(\(A, p, r\))

\[
\text{if } p < r \\
\text{then } q \leftarrow \text{PARTITION}(A, p, r) \\
\text{QUICKSORT}(A, p, q-1) \\
\text{QUICKSORT}(A, q+1, r)
\]

Initial call: \(\text{QUICKSORT}(A, 1, n)\)

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from **code tuning**.
- Quicksort behaves well even with caching and virtual memory.
Quicksort

• Average: $O(n \log n)$

• Worst $O(n^2)$

Minutesort – max amount sorted in 1 minute
– 116GB in 58.7 sec (Jim Wyllie, IBM Research)
– 40-node 80-Itanium cluster, SAN array of 2,520 disks

• Performance / Price Sort and PennySort
• Sort Benchmark Home Page
 • We have a new benchmark called new GraySort, new in memory of the father of the sort benchmarks, Jim Gray. It replaces TeraByteSort which is now retired.
 • The submission deadline is new 15 April 2009. new

• New rules for GraySort:
 • The input file size is now minimum ~100TB or 1T records. Entries with larger input sizes also qualify.
 • The winner will have the fastest SortedRecs/Min.
 • We now provide a new input generator that works in parallel and generates binary data. See below.
 • For the Daytona category, we have two new requirements. (1) The sort must run continuously (repeatedly) for a minimum 1 hour. (This is a minimum reliability requirement). (2) The system cannot overwrite the input file.

Year 2008 Results

<table>
<thead>
<tr>
<th></th>
<th>Daytona</th>
<th>Indy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penny</td>
<td>1,812 M records (181 GB) in 2,408 seconds</td>
<td>1,896 M records (190 GB) in 2,408 seconds</td>
</tr>
<tr>
<td></td>
<td>2.6 GHz AMD Opteron, 7 GB RAM, 7,200 SATA disks, Linux</td>
<td>2.6 GHz AMD Opteron, 7 GB RAM, 7,200 SATA disks, Linux</td>
</tr>
<tr>
<td></td>
<td>Paolo Bertolli, Marco Bernardi and Enrico Prisco, USTC, Pavia, Italy</td>
<td>Paolo Bertolli, Marco Bernardi and Enrico Prisco, USTC, Pavia, Italy</td>
</tr>
<tr>
<td>Minute</td>
<td>214 GB (2140 million records)</td>
<td>264 GB (2640 M records)</td>
</tr>
<tr>
<td></td>
<td>TikTokBamBamSort</td>
<td>TikTokBamBamSort</td>
</tr>
<tr>
<td></td>
<td>t2500 disk cluster, 400 nodes x 2 processors, 6-disk RAID, 8 GB memory</td>
<td>t2500 disk cluster, 400 nodes x 2 processors, 6-disk RAID, 8 GB memory</td>
</tr>
<tr>
<td></td>
<td>Bradley C. Kuszmaul, MIT</td>
<td>Bradley C. Kuszmaul, MIT</td>
</tr>
<tr>
<td>TeraByte</td>
<td>768 seconds (~2.4 minutes)</td>
<td>107 seconds (~3.6 minutes)</td>
</tr>
<tr>
<td></td>
<td>Hadoop</td>
<td>TikTokBamBamSort</td>
</tr>
<tr>
<td></td>
<td>910 nodes x 4 (dual-core processors), 4 disks, 8 GB memory</td>
<td>t2500 disk cluster, 400 nodes x 2 processors, 6-disk RAID, 8 GB memory</td>
</tr>
<tr>
<td></td>
<td>Owen O'Malley, Yahoo</td>
<td>Bradley C. Kuszmaul, MIT</td>
</tr>
<tr>
<td>Joule</td>
<td>18 GB sorted using 6.6x8XSGE</td>
<td>18 GB sorted using 8XSGE</td>
</tr>
<tr>
<td></td>
<td>11,600 records sorted / node</td>
<td>11,600 records sorted / node</td>
</tr>
<tr>
<td></td>
<td>GridSort</td>
<td>GridSort</td>
</tr>
<tr>
<td></td>
<td>Mobile Core 2 Duo, 15 SATA laptop disks, Numb</td>
<td>Mobile Core 2 Duo, 15 SATA laptop disks, Numb</td>
</tr>
<tr>
<td></td>
<td>Jesse Stone, Stanford, Mobil A & Assis (SP) Lab</td>
<td>Jesse Stone, Stanford, Mobil A & Assis (SP) Lab</td>
</tr>
<tr>
<td></td>
<td>Perlis Computing (SP) Lab</td>
<td>Perlis Computing (SP) Lab</td>
</tr>
<tr>
<td></td>
<td>Jesse Stone, Stanford</td>
<td>Jesse Stone, Stanford</td>
</tr>
<tr>
<td>Joule</td>
<td>100 GB sorted using 8x8XSGE</td>
<td>100 GB sorted using 8XSGE</td>
</tr>
</tbody>
</table>

Sorting in linear time

Counting sort: No comparisons between elements.

- **Input:** \(A[1 \ldots n]\), where \(A[j] \in \{1, 2, \ldots, k\}\).
- **Output:** \(B[1 \ldots n]\), sorted.
- **Auxiliary storage:** \(C[1 \ldots k]\).

Counting sort

```
for i ← 1 to k
    do C[i] ← 0

for j ← 1 to n
    do C[A[j]] ← C[A[j]] + 1  // \(C[i] = |\{\text{key} = i\}|\)

for i ← 2 to k
    do C[i] ← C[i] + C[i−1]  // \(C[i] = |\{\text{key} \leq i\}|\)

for j ← n downto 1
    do B[C[A[j]]] ← A[j]
        C[A[j]] ← C[A[j]] − 1
```
Loop 1

\[
\text{for } i \leftarrow 1 \text{ to } k \\
\quad \text{do } C[i] \leftarrow 0
\]

Loop 2

\[
\text{for } j \leftarrow 1 \text{ to } n \\
\quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright \quad C[i] = |\{\text{key} = i\}|
\]
Loop 3

\[
A: \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \end{bmatrix} \quad C: \begin{bmatrix} 1 & 0 & 2 & 2 \end{bmatrix}
\]

\[
B: \begin{bmatrix} \text{ } & \text{ } & \text{ } & \text{ } & \text{ } \end{bmatrix} \quad C': \begin{bmatrix} 1 & 1 & 3 & 5 \end{bmatrix}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \triangleright C[i] = |\{\text{key} \leq i\}|
\]

Loop 4

\[
A: \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \end{bmatrix} \quad C: \begin{bmatrix} 1 & 1 & 2 & 5 \end{bmatrix}
\]

\[
B: \begin{bmatrix} \text{3} & \text{4} \end{bmatrix} \quad C': \begin{bmatrix} 1 & 1 & 2 & 4 \end{bmatrix}
\]

\[
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]
Analysis

\[\Theta(k) \]
\[
\begin{align*}
 &\text{for } i \leftarrow 1 \text{ to } k \\
 &\quad \text{do } C[i] \leftarrow 0
\end{align*}
\]

\[\Theta(n) \]
\[
\begin{align*}
 &\text{for } j \leftarrow 1 \text{ to } n \\
 &\quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1
\end{align*}
\]

\[\Theta(k) \]
\[
\begin{align*}
 &\text{for } i \leftarrow 2 \text{ to } k \\
 &\quad \text{do } C[i] \leftarrow C[i] + C[i-1]
\end{align*}
\]

\[\Theta(n) \]
\[
\begin{align*}
 &\text{for } j \leftarrow n \text{ downto } 1 \\
 &\quad \text{do } B[C[A[j]]] \leftarrow A[j] \\
 &\quad \quad C[A[j]] \leftarrow C[A[j]] - 1
\end{align*}
\]

\[\Theta(n + k) \]

Running time

If \(k = O(n) \), then counting sort takes \(\Theta(n) \) time.

- But, sorting takes \(\Omega(n \lg n) \) time!
- Where’s the fallacy?

Answer:

- *Comparison sorting* takes \(\Omega(n \lg n) \) time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!
Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

\[A: 4 1 3 4 3 \]
\[B: 1 3 3 4 4 \]

Exercise: What other sorts have this property?

Radix sort

- **Origin:** Herman Hollerith’s card-sorting machine for the 1890 U.S. Census. (See Appendix 1.)
- Digit-by-digit sort.
- Hollerith’s original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.
Radix sort

Radix-Sort(A,d)
1. for i = 1 to d
2. do use a stable sort to sort A on digit i
Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order \(t - 1 \) digits.

- Sort on digit \(t \)
 - Two numbers that differ in digit \(t \) are correctly sorted.
 - Two numbers equal in digit \(t \) are put in the same order as the input ⇒ correct order.
Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort n computer words of b bits each.
- Each word can be viewed as having b/r base-2^r digits.

Example: 32-bit word

$r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-2^8 digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-2^{16} digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to $k - 1$. If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$T(n, b) = \Theta\left(\frac{b}{r} (n + 2^r)\right).$$

Choose r to minimize $T(n, b)$:
- Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.
Choosing r

$$T(n, b) = \Theta\left(\frac{b}{r} (n + 2^r)\right)$$

Minimize $T(n, b)$ by differentiating and setting to 0.

Or, just observe that we don’t want $2^r \gg n$, and there’s no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

- For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \lg 2000 \rceil = 11$ passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.
Radix sort using lists (stable)

Radix sort using lists (stable)
Radix sort using lists (stable)

1. a
 b
 c
d
 bba
 bbb
 aac
 aad

2. a
 b
 c
d
 aac
 bba
 cca
 ccb

3. a
 b
 c
d
 aac
 bba
 cca
 ccb

Why not from left to right?

0101100 0101100 0101100 0101100
1001010 0010010 0010010 0010010
1111000 1111000 0101000 0101000
1001001 1001001 1001001 1001001
0010010 1001010 1001010 1001010
0010011 0010011 1001001 1001001
0101000 0101000 1111000 1111000
0010000 0010000 0010000 1001001

• Swap ‘0’ with first ‘1’
• Idea 1: recursively sort first and second half
 – Exercise?
Bitwise sort left to right

• Idea2:
 – swap elements only if the prefixes match...

 – For all bits from most significant
 • advance when 0
 • when 1 -> look for next 0
 – if prefix matches, swap
 – otherwise keep advancing on 0’s and look for next 1

Bitwise left to right sort

/* Historical sorting – was used in Univ. of Tartu using assembler…. */
/* C implementation – Jaak Vilo, 1989 */

void bitwisesort(SORTTYPE *ARRAY , int size)
{
 int i, j, tmp, nrbits ;

 register SORTTYPE mask , curbit , group ;

 nrbits = sizeof(SORTTYPE) * 8 ;

 curbit = 1 << (nrbits-1) ; /* set most significant bit 1 */
 mask = 0; /* mask of the already sorted area */

Jaak Vilo, Univ. of Tartu
do { /* For each bit */
 i=0;
 new_mask:
 for(); (i < size) && (! (ARRAY[i] & curbit)); ++i; /* Advance while bit == 0 */
 if (i >= size) goto array_end;
 group = ARRAY[i] & mask; /* Save current prefix snapshot */
 j=i; /* memorize location of 1 */
 for(); {
 if (++i >= size) goto array_end; /* reached end of array */
 if (ARRAY[i] & mask) != group) goto new_mask; /* new prefix */
 if (! (ARRAY[i] & curbit)) { /* bit is 0 – need to swap with previous location of 1, A[i]  A[j] */
 tmp = ARRAY[i]; ARRAY[i] = ARRAY[j]; ARRAY[j] = tmp; j += 1; /* swap and increase j to the next possible 1 */
 }
 }
 array_end:
 mask = mask | curbit; /* area under mask is now sorted */
 curbit >>= 1; /* next bit */
} while (curbit); /* until all bits have been sorted... */

Jaak Vilo, Univ. of Tartu

Bitwise from left to right

0010000
0010010
0101000
0101100
1001010
1001001
1001001
1111000

• Swap ‘0’ with first ‘1’

Jaak Vilo, Univ. of Tartu
Bucket sort

- Assume uniform distribution
- Allocate \(O(n) \) buckets
- Assign each value to pre-assigned bucket

Sort small buckets with insertion sort
Order statistics

• Minimum – the smallest value
• Maximum – the largest value
• In general i’th value.
• Find the median of the values in the array
• Median in sorted array A :
 – n is odd A[(n+1)/2]
 – n is even – A[\lfloor (n+1)/2 \rfloor] or A[\lceil (n+1)/2 \rceil]

Order statistics

• Input: A set A of n numbers and i, 1 ≤ i ≤ n
• Output: x from A that is larger than exactly i-1 elements of A
Minimum

Minimum(A)

1. \(\text{min} = A[1] \)
2. for \(i = 2 \) to length(A)
3. \(\text{if} \ \text{min} > A[i] \)
4. \(\text{then} \ \text{min} = A[i] \)
5. return \(\text{min} \)

\(n-1 \) comparisons.

Min and max together

- compare every two elements \(A[i], A[i+1] \)
- Compare larger against current max
- Smaller against current min

- \(3 \left\lceil n / 2 \right\rceil \)
Selection in expected $O(n)$

Randomised-select(A, p, r, i)

if $p=r$ then return $A[p]$

$q = \text{Randomised-Partition}(A, p, r)$

$k = q - p + 1$ \hspace{1cm} // nr of elements in subarr

if $i <= k$

then return $\text{Randomised-Partition}(A, p, q, i)$

else return $\text{Randomised-Partition}(A, q+1, r, i-k)$

Conclusion

• Sorting in general $O(n \log n)$
• Quicksort is rather good

• Linear time sorting is achievable when one does not assume only direct comparisons

• Find i’th value – expected $O(n)$

• Find i’th value: worst case $O(n)$ – see CLRS